9 research outputs found

    Phantom limb pain, cortical reorganization and the therapeutic effect of mental imagery

    Get PDF
    Using functional MRI (fMRI) we investigated 13 upper limb amputees with phantom limb pain (PLP) during hand and lip movement, before and after intensive 6-week training in mental imagery. Prior to training, activation elicited during lip purse showed evidence of cortical reorganization of motor (M1) and somatosensory (S1) cortices, expanding from lip area to hand area, which correlated with pain scores. In addition, during imagined movement of the phantom hand, and executed movement of the intact hand, group maps demonstrated activation not only in bilateral M1 and S1 hand area, but also lip area, showing a two-way process of reorganization. In healthy participants, activation during lip purse and imagined and executed movement of the non-dominant hand was confined to the respective cortical representation areas only. Following training, patients reported a significant reduction in intensity and unpleasantness of constant pain and exacerbations, with a corresponding elimination of cortical reorganization. Post hoc analyses showed that intensity of constant pain, but not exacerbations, correlated with reduction in cortical reorganization. The results of this study add to our current understanding of the pathophysiology of PLP, underlining the reversibility of neuroplastic changes in this patient population while offering a novel, simple method of pain relief

    Motor Cortex Representation of the Upper-Limb in Individuals Born without a Hand

    Get PDF
    The body schema is an action-related representation of the body that arises from activity in a network of multiple brain areas. While it was initially thought that the body schema developed with experience, the existence of phantom limbs in individuals born without a limb (amelics) led to the suggestion that it was innate. The problem with this idea, however, is that the vast majority of amelics do not report the presence of a phantom limb. Transcranial magnetic stimulation (TMS) applied over the primary motor cortex (M1) of traumatic amputees can evoke movement sensations in the phantom, suggesting that traumatic amputation does not delete movement representations of the missing hand. Given this, we asked whether the absence of a phantom limb in the majority of amelics means that the motor cortex does not contain a cortical representation of the missing limb, or whether it is present but has been deactivated by the lack of sensorimotor experience. In four upper-limb amelic subjects we directly stimulated the arm/hand region of M1 to see 1) whether we could evoke phantom sensations, and 2) whether muscle representations in the two cortices were organised asymmetrically. TMS applied over the motor cortex contralateral to the missing limb evoked contractions in stump muscles but did not evoke phantom movement sensations. The location and extent of muscle maps varied between hemispheres but did not reveal any systematic asymmetries. In contrast, forearm muscle thresholds were always higher for the missing limb side. We suggest that phantom movement sensations reported by some upper limb amelics are mostly driven by vision and not by the persistence of motor commands to the missing limb within the sensorimotor cortex. We propose that prewired movement representations of a limb need the experience of movement to be expressed within the primary motor cortex

    Conduction deficits of callosal fibres in early multiple sclerosis

    No full text
    OBJECTIVEβ€”To study the diagnostic usefulness of transcallosal inhibition (TI) elicited by transcranial magnetic stimulation (TMS) in detecting central conduction deficits in early multiple sclerosis. Corticospinally mediated excitatory responses evoked by TMS are accepted as a sensitive diagnostic tool in multiple sclerosis. Recently, TI evoked by TMS has been introduced as a new paradigm to test the function of callosal fibres interconnecting both hand associated motor cortices.
METHODSβ€”Focal TMS of the motor cortex was performed in 50 patients with early relapsing-remitting multiple sclerosis. Corticospinally mediated (central motor latencies, amplitudes) and transcallosally mediated (onset latency and duration of TI) stimulation effects were investigated.
RESULTSβ€”TMS disclosed abnormalities of corticospinally mediated responses in 62% and of TI in 80% of the patients.
CONCLUSIONβ€”The assessment of TI allows the discovery of lesions within the periventricular white matter that were not accessible by neurophysiological techniques before. This new paradigm increases the sensitivity of TMS with which to detect central conduction deficits in early multiple sclerosis.


    Pathophysiology of Hydrocephalus

    No full text
    corecore