12,647 research outputs found

    Collective resonances in plasmonic crystals: Size matters

    Full text link
    Periodic arrays of metallic nanoparticles may sustain Surface Lattice Resonances (SLRs), which are collective resonances associated with the diffractive coupling of Localized Surface Plasmon Resonances (LSPRs). By investigating a series of arrays with varying number of particles, we traced the evolution of SLRs to its origins. Polarization resolved extinction spectra of arrays formed by a few nanoparticles were measured, and found to be in very good agreement with calculations based on a coupled dipole model. Finite size effects on the optical properties of the arrays are observed, and our results provide insight into the characteristic length scales for collective plasmonic effects: for arrays smaller than 5 x 5 particles, the Q-factors of SLRs are lower than those of LSPRs; for arrays larger than 20 x 20 particles, the Q-factors of SLRs saturate at a much larger value than those of LSPRs; in between, the Q-factors of SLRs are an increasing function of the number of particles in the array.Comment: 4 figure

    Stability of Influence Maximization

    Full text link
    The present article serves as an erratum to our paper of the same title, which was presented and published in the KDD 2014 conference. In that article, we claimed falsely that the objective function defined in Section 1.4 is non-monotone submodular. We are deeply indebted to Debmalya Mandal, Jean Pouget-Abadie and Yaron Singer for bringing to our attention a counter-example to that claim. Subsequent to becoming aware of the counter-example, we have shown that the objective function is in fact NP-hard to approximate to within a factor of O(n1−ϵ)O(n^{1-\epsilon}) for any ϵ>0\epsilon > 0. In an attempt to fix the record, the present article combines the problem motivation, models, and experimental results sections from the original incorrect article with the new hardness result. We would like readers to only cite and use this version (which will remain an unpublished note) instead of the incorrect conference version.Comment: Erratum of Paper "Stability of Influence Maximization" which was presented and published in the KDD1

    Counterfactual Explanations in Sequential Decision Making Under Uncertainty

    Get PDF
    Methods to find counterfactual explanations have predominantly focused on one step decision making processes. In this work, we initiate the development of methods to find counterfactual explanations for decision making processes in which multiple, dependent actions are taken sequentially over time. We start by formally characterizing a sequence of actions and states using finite horizon Markov decision processes and the Gumbel-Max structural causal model. Building upon this characterization, we formally state the problem of finding counterfactual explanations for sequential decision making processes. In our problem formulation, the counterfactual explanation specifies an alternative sequence of actions differing in at most k actions from the observed sequence that could have led the observed process realization to a better outcome. Then, we introduce a polynomial time algorithm based on dynamic programming to build a counterfactual policy that is guaranteed to always provide the optimal counterfactual explanation on every possible realization of the counterfactual environment dynamics. We validate our algorithm using both synthetic and real data from cognitive behavioral therapy and show that the counterfactual explanations our algorithm finds can provide valuable insights to enhance sequential decision making under uncertainty

    Thermalization and Cooling of Plasmon-Exciton Polaritons: Towards Quantum Condensation

    Get PDF
    We present indications of thermalization and cooling of quasi-particles, a precursor for quantum condensation, in a plasmonic nanoparticle array. We investigate a periodic array of metallic nanorods covered by a polymer layer doped with an organic dye at room temperature. Surface lattice resonances of the array---hybridized plasmonic/photonic modes---couple strongly to excitons in the dye, and bosonic quasi-particles which we call plasmon-exciton-polaritons (PEPs) are formed. By increasing the PEP density through optical pumping, we observe thermalization and cooling of the strongly coupled PEP band in the light emission dispersion diagram. For increased pumping, we observe saturation of the strong coupling and emission in a new weakly coupled band, which again shows signatures of thermalization and cooling.Comment: 8 pages, 5 figures including supplemental material. The newest version includes new measurements and corrections to the interpretation of the result

    From weak to strong coupling of localized surface plasmons to guided modes in a luminescent slab

    Get PDF
    We investigate a periodic array of aluminum nanoantennas embedded in a light-emitting slab waveguide. By varying the waveguide thickness we demonstrate the transition from weak to strong coupling between localized surface plasmons in the nanoantennas and refractive index guided modes in the waveguide. We experimentally observe a non-trivial relationship between extinction and emission dispersion diagrams across the weak to strong coupling transition. These results have implications for a broad class of photonic structures where sources are embedded within coupled resonators. For nanoantenna arrays, strong vs. weak coupling leads to drastic modifications of radiation patterns without modifying the nanoantennas themselves, thereby representing an unprecedented design strategy for nanoscale light sources

    Evolution of Conversations in the Age of Email Overload

    Full text link
    Email is a ubiquitous communications tool in the workplace and plays an important role in social interactions. Previous studies of email were largely based on surveys and limited to relatively small populations of email users within organizations. In this paper, we report results of a large-scale study of more than 2 million users exchanging 16 billion emails over several months. We quantitatively characterize the replying behavior in conversations within pairs of users. In particular, we study the time it takes the user to reply to a received message and the length of the reply sent. We consider a variety of factors that affect the reply time and length, such as the stage of the conversation, user demographics, and use of portable devices. In addition, we study how increasing load affects emailing behavior. We find that as users receive more email messages in a day, they reply to a smaller fraction of them, using shorter replies. However, their responsiveness remains intact, and they may even reply to emails faster. Finally, we predict the time to reply, length of reply, and whether the reply ends a conversation. We demonstrate considerable improvement over the baseline in all three prediction tasks, showing the significant role that the factors that we uncover play, in determining replying behavior. We rank these factors based on their predictive power. Our findings have important implications for understanding human behavior and designing better email management applications for tasks like ranking unread emails.Comment: 11 page, 24th International World Wide Web Conferenc
    • …
    corecore