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Formation of laser-induced periodic surface structures on niobium
by femtosecond laser irradiation
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(Received 19 December 2013; accepted 15 April 2014; published online 1 May 2014)

The surface morphology of a Niobium sample, irradiated in air by a femtosecond laser with a

wavelength of 800 nm and pulse duration of 100 fs, was examined. The period of the

micro/nanostructures, parallel and perpendicularly oriented to the linearly polarized fs-laser beam,

was studied by means of 2D Fast Fourier Transform analysis. The observed Laser-Induced Periodic

Surface Structures (LIPSS) were classified as Low Spatial Frequency LIPSS (periods about 600 nm)

and High Spatial Frequency LIPSS, showing a periodicity around 300 nm, both of them

perpendicularly oriented to the polarization of the incident laser wave. Moreover, parallel high spatial

frequency LIPSS were observed with periods around 100 nm located at the peripheral areas of the

laser fingerprint and overwritten on the perpendicular periodic gratings. The results indicate that this

method of micro/nanostructuring allows controlling the Niobium grating period by the number of

pulses applied, so the scan speed and not the fluence is the key parameter of control. A discussion on

the mechanism of the surface topology evolution was also introduced. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4873459]

I. INTRODUCTION

The generation of periodic subwavelength structures pro-

vides a simple way to control the aesthetic, functional, and

protective surface properties of materials. In this context, laser

micro- and nano-structuring techniques are getting increased

interest for this purpose. Among the entire laser surface struc-

turing techniques, direct femtosecond laser irradiation allows

overcoming the limitations imposed by the diffraction limit1

in the definition of structures with periods below the incident

laser wavelength. Consequently, Femtosecond Laser Induced

Periodic Surface Structures (fs-LIPSS) stand out as one of the

most actively studied approaches. Fs-LIPSS can be catego-

rized2 into Low Spatial Frequency LIPSS (LSFL), with orien-

tation perpendicular to the laser beam polarization and

periods close to the incident wavelength, and High Spatial

Frequency LIPSS (HSFL), that appear with orientations both

parallel and perpendicular to beam polarization, and periods

that show values much smaller than those of LSFL, even

reaching tens of nanometers.

In spite of the numerous literature aimed at discerning

the HSFL generation mechanism and the reduction of the

LSFL period compared to the incident laser wavelength,3–13

many uncertainties still arise, which means that further

experimental and theoretical research is needed to establish

an accurate model.

Since a decade ago, fs-LIPSS have been explored in

metals.3–5,8–12,14 However, the formation of fs-LIPSS in

Niobium (Nb) has not yet been reported to the best of our

knowledge. The generation of micro/nanopatterned Nb

surfaces can provide multiple advantages specially regarding

the Nb uses in applications such as electrodes for sensors15,16

and load-bearing bone implants.17,18 In the case of medical

implants, an appropriate corrugation is essential to yield

mechanical interlocking of bone for improved clinical

performance of endosseous implants, to mimicry of local

cellular environments and favor the process of rapid bone

formation for osseointegration. On the other hand, the pat-

terning of Nb used as electrode material enhances the electri-

cal properties.

In the present paper, we address the generation of LIPSS

by linearly polarized fs-laser irradiation of Niobium in air.

II. EXPERIMENTAL

A femtosecond laser micro/nanomachining tool was

employed for the LIPSS experiments. A Ti:Sapphire laser

system consisting of a mode-locked oscillator and a regener-

ative amplifier was used to generate 100 fs pulses with a cen-

tral wavelength of 800 nm and a repetition rate of 1 kHz. The

pulse energy was adjusted with a two-step setup: A constant

attenuator consisting of several neutral density filters and a

variable attenuator formed by a half-wave plate and a low

dispersion polarizer. The 12 mm diameter laser beam was

focused on the sample using a 10� microscope objective

with a NA of 0.3. This objective, together with a CCD cam-

era, was used for online monitoring of the laser writing pro-

cess. The layout of the experimental setup is shown in

Figure 1.

The irradiated material was a polished bulk Niobium

disc with a RMS surface roughness of 2.08 nm. Microstripes

of 15 mm long were written on the surface of the Nb probe

with a fixed pulse energy of 3 lJ in order to generate the

LIPSS. The sample was placed in a motorized XYZ stage,

which allows controlling the number of laser shots applied

by varying the XY scan speed, and the laser fluence by

changing the distance between the objective and the sample

(defocusing distance). The range of scanning speeds tested is

between 0.01 and 1.00 mm�s�1. The values of the laser

fluence are between 29 and 53 mJ�cm�2.

0021-8979/2014/115(17)/173101/6/$30.00 VC 2014 AIP Publishing LLC115, 173101-1
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The Nb topography was inspected by Field Emission

Scanning Electron Microscopy (FESEM), Atomic Force

Microscopy (AFM) in tapping mode and contact surface pro-

filometry. A free and open source software (Gwyddion) was

used to perform the two dimensional Fast Fourier Transform

of the micrographs. The 2D FFT provides an effective way

to analyze the entire images and gives therefore, more repre-

sentative values for LIPSS periods than singular values

deduced from the SEM images.

III. RESULTS AND DISCUSSION

A. Frequency and orientation of the periodic
structures

Figure 2 shows the typical results from this experimental

set-up. These patterns are characterized by the period (K)

and the orientation with respect to the incident beam polar-

ization. Perpendicular LSFL, perpendicular HSFL and paral-

lel HSFL are found for the range of laser fluences and scan

speeds tested.

At 29 mJ�cm�2 (Figures 2(a)–2(d)), a scan speed of

0.1 mm�s�1 was required to start surface texturing (Figure

2(a)) with no evidence of material removal. A set of shallow

grooves were formed parallel to the incident laser beam

polarization, whose period increases as the scan speed

decreases or the number of pulses applied increases

(Figure 2(a) K¼ 51 nm and Figure 2(b) K¼ 129 nm).

Furthermore, subwavelength apertures perpendicular to the

beam polarization were printed with a period around 425 nm.

By applying 1899 pulses (0.06 mm�s�1), contact profilometry

shows that these generated structures remain below the origi-

nal surface level (crater depth of around 30 nm), evidencing

a certain material ablation. This implies that the process has

been performed slightly above the ablation threshold for the

number of pulses applied.19,20 By increasing the number

of pulses up to 3796 pulses (scan speed of 0.03 mm�s�1),

deeper craters and deeper ripples appeared with periods

between 275 to 315 nm and orientation perpendicular to the

beam polarization, showed by the white arrows in the

micrographs.

At a higher laser fluence, 53 mJ�cm�2 (Figures

2(e)–2(h)), much lower number of pulses (85 pulses) was

needed to start surface corrugation and material ablation

(crater depth of around 80 nm) (Figure 2(e)). While the lower

energy density produces parallel ripples and subwavelength

apertures at the first steps of surface modification, higher val-

ues of the irradiation fluences provide shallow perpendicular

ripples with periods between 500–715 nm. By reducing the

scan speed down to 0.1 mm s�1, the depth of the perpendicu-

lar ripples increases (Figure 2(h)), and the period of the

LIPSS decreased to 300 nm. So, at this high fluence regime,

the transition from LSFL to HSFL perpendicular to the laser

polarization was clearly observed.

The periods of the perpendicular LSFL and HSFL, cal-

culated from 2D-FFT analysis, are summarized in Figure 3.

Note that two different kinds of periodic gratings perpendic-

ular to the laser beam polarization have been detected in the

Nb samples. One corresponds to periods between 400 and

715 nm, assigned as LSFL or near subwavelength ripples,

where the ratio of K to the laser wavelength (k) in normal

incidence takes values between 0.4 and 1.0. On the other

hand, periodic structures with periods around 300 nm,

namely HSFL or deep subwavelength ripples, appear with

K/k ratios lower than 0.4.

FIG. 1. Schematic layout of the femtosecond laser micro/nanomachining setup.

FIG. 2. FESEM images of the Nb surface after laser irradiation at fluences of 29 mJ�cm�2 from (a) to (d) and 53 mJ�cm�2 from (e) to (h). The number of pulses

applied are (a) 1139, (b) 1898, (c) 3796, (d) 5694 pulses, (e) 85, (f) 142, (g) 284, and (h) 851 pulses. The arrow shows the polarization of the incident laser

beam.

173101-2 Pan et al. J. Appl. Phys. 115, 173101 (2014)
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Additionally, a LIPSS analysis was also carried out in

the central and peripheral areas of the laser fingerprint. Both

locations show the effects of irradiating at different energy

density due to the Gaussian beam profile of the incident

fs-laser, and different number of pulses since the circular

laser spot overlapping.

Figure 4 presents the FESEM images of the Nb sample

irradiated at 32 mJ�cm�2 with 1087 pulses (Figure 4(a)) and

with 3623 pulses (Figure 4(b)). Applying 1087 pulses, the

peripheral area shows HSFL parallel to the polarization with

periods around 145 nm (Figure 4(a)), and the parallel ripples

in the central area reduces their period down to 65 nm. An

increase of the number of pulses applied (up to 3623 pulses),

generates a transformation of the parallel HSFL in the

peripheral area into nanodrops with round shape. Moreover,

the ripples at the edge of the perpendicular ripples almost

disappear to lead a nanobubble shape (Figure 4(b)). This

tendency was observed at the whole range of laser fluence

tested. Hence, the intensity and number of pulses threshold

for the short parallel LIPSS is lower than that of the perpen-

dicular LIPSS, since the former are generated even at the

peripheral areas of the microstripes.

B. Transition from LSFL to HSFL perpendicular to the
beam polarization

Since in some operation conditions both types of LSFL

and HSFL perpendicular periodic structures appear simulta-

neously (Figure 3), a further analysis of the proportion of

perpendicular ripples with low and high spatial frequency

periods (near and deep subwavelength ripples) is carried out.

In order to do this, the ratio of the peak areas of the corre-

sponding periods on the 2D-FFT signals profiles were calcu-

lated and analyzed. Figure 5 depicts the peaks corresponding

to the HSFL and LSFL periods (light and dark gray rectan-

gles, respectively) on the Fourier Transform profile of the

FESEM images corresponding to the Figures 2(f)–2(h). It is

shown that, as the number of pulses applied increases, the

ratio between LSFL and HSFL decreases. Therefore, the

decrease of the feedrate results in a predominance of HSFL

structures.

The ILSFL/IHSFL ratio was calculated for each irradiation

condition, and the results are plotted in Figure 6 as a function

of the number of pulses and allowed the definition of three

different regimes:

1. For ILSFL=IHSFL � 2, surface gratings with a period around

600 nm is more frequent.

2. For ILSFL=IHSFL � 0:5, patterns with a more frequent

300 nm period appear.

3. For 0:5 < ILSFL=IHSFL < 2, coexistence of both types of

laser-induced ripples occurs.

It is clearly observed that the first regime, where the tex-

tured surface shows mainly a periodicity of 600 nm (see

FIG. 3. Periods of the perpendicular LIPSS as a function of the number of

pulses applied for each energy density tested and table summarizing the av-

erage number of high and low frequency periodicities measured for the dif-

ferent fluences.

FIG. 4. FESEM micrographs of Niobium samples irradiated at (a) 32 mJ�cm�2 and 0.1 mm�s�1 (1087 pulses) and (b) 32 mJ�cm�2 and 0.03 mm�s�1

(3623 pulses). The insets show images at 18000� magnification of the central area.

173101-3 Pan et al. J. Appl. Phys. 115, 173101 (2014)
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Figures 2(e) and 2(f)), corresponds to the samples processed

at 53 mJ�cm�2 and 85 or 142 pulses (1.0 and 0.6 mm�s�1).

As the number of pulses is increased the generation of HSFL

(300 nm) is enhanced up to 851 pulses (0.1 mm�s�1), where

the 300 nm period is more frequent. A similar behaviour was

observed at lower energy densities (47 and 36 mJ�cm�2); the

transition from LSFL to HSFL takes place as the scan speed

decreases or the number of pulses applied increases.

Therefore, the number of pulses (and not the fluence) is the

key parameter to control the period of the generated

structures.

In summary, the average size of the perpendicular sur-

face structures becomes smaller with an increasing number

of laser pulses that leads to the formation of ripples with

periods around 300 nm (HSFL) by the splitting of the main

ridge of the low spatial frequency ripples. Moreover, in the

ablation regime corresponding to high fluence, the transition

between wavelength and subwavelength structures is

observed by an intermediate step where the concurrence of

both laser-induced ripples is observed.

So as to validate what was observed on the SEM images

and to obtain the depth profile of the ripples, an intermediate

structure formed by irradiating at 47 mJ�cm�2 and

0.3 mm�s�1 (302 pulses) presented in Figure 7(a) was further

investigated by AFM. Figure 7(b) is an AFM 3D image of

this intermediate structure where a combination of LSFL and

HSFL is depicted. The AFM 3D cross section profile is pre-

sented in Figure 7(c). In this analysis, it is clearly visible that

the main ridge of the LSFL ripple, located on the left, starts

to split into two ridges. The splitting of the LSFL ridge pro-

vides a new ripple with a period around 300 nm (on the right

side ripple).

The morphological evolution mechanism here presented

is in agreement with the results reported in the literature.3–5

By numerical simulations, Yao and Zhang establish that the

interaction of the incident light with the metal surface will

be modified after the formation of LSFL, leading to the

redistribution of the electric field intensity on the metal

surface. For shallow LSFL, the incident light will be local-

ized in the valleys of the ripples resulting in a deepening and

an elongation of the periodic pattern. This evolution can be

observed in Figures 1(e)–1(g). When the depth of the

grooves exceeds a certain value (around 150 nm in Figure

7(c)), the distribution of the electric field will be greatly

changed, so the maxima of the electric field intensity will be

FIG. 5. 2D-FFT scattering graphs and their profiles obtained from the detailed images collected on Figures 2(f)–2(h). The light and dark gray rectangles delimit

the peaks corresponding to the HSFL and LSFL periods, respectively. The irradiation fluence was 53 mJ�cm�2, and the number of pulses was (a) 142, (b) 284,

and (c) 851.

FIG. 6. Ratio of the peak areas of the laser-induced low and high spatial fre-

quency LIPSS from the 2D-FFT as a function of the number of pulses.

173101-4 Pan et al. J. Appl. Phys. 115, 173101 (2014)
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localized on the top of the ripples, i.e., protuberance situated

at both sides of the valleys. This feature will induce the split

of the long periodic ripples and the generation of short peri-

odic ripples.3,5

C. Physical models for the generation of periodic
structures

In order to analyse the physical mechanism behind Nb

surface structuring, we compare our experimental results

with different models discussed in literature.

The classical theory or efficacy factor theory21 considers

the interference between the incident laser and the scattered

light as the possible explanation of the periodic grating

generation. By this theory, supposing a constant refractive

index, the interspacing d of these periodic ripples is classi-

cally given by

d ¼ k=ð16sin hÞ; (1)

where k and h are the laser wavelength and the laser beam

incidence angle measured from the surface normal, respec-

tively. This is clearly observed for picosecond and nanosec-

ond laser irradiation. Nevertheless, the LSFL periods

obtained in the whole range tested by the femtosecond laser

are shorter than the laser wavelength (<0.9k). As expected,

our experimental result does not follow this conventional

prediction.

In order to explain the period reduction, several

works6–8 suggest the efficacy factor theory along a transient

change of the refractive index (n). Skolski et al.8 explain in

alloyed steel the formation of parallel HSFL with periods

between k/4–k/8 and the appearance of perpendicular LSFL

with periods somewhat smaller than the incident laser wave-

length. These results are in agreement with what observed in

our samples. We observed the generation of parallel ripples

with periodicity around 100 nm, which increases by the rise

of the number of laser pulses applied, and also the formation

of the perpendicular ripples with periods around 600 nm.

Currently, another explanation, which try to understand

the “non classical” characteristics of the periodic gratings on

metal surfaces obtained by multipulse femtosecond lasers

irradiation, considers that the ripples result from the Surface

Plasmons (SP)-laser interference and the subsequent grating-

assisted SP-laser coupling.9–13 The excitation of the

plasmonic wave by incident laser wave should be fulfilled in

our experiments, since the LIPSS reported correspond to a

laser irradiation with a number of pulses equal or higher to

85. Therefore, the first several pulses could start texturing

the Nb surface and then, subsequent pulses would cause the

interference coupling with the surface plasmons.

According to this plasmonic model, for the normal inci-

dent laser, the plasmon wavelength at the metal/dielectric

interface is given by22

kSP ¼ k< ed þ ~em

ed~em

� �1=2
" #

; (2)

where ed¼ 1 (complex dielectric constant of the dielectric),

em¼ (nþ ij)2 is the complex dielectric constant of the metal,

n is the real part of the refractive index of the metal, j is the

coefficient of extinction or imaginary part of the refractive

index, and k is the wavelength of the incident laser.

Considering the Niobium refractive index and extinction

coefficient at 800 nm, n¼ 2.15, and j¼ 3.37, respectively

(measured by Weaver et al. in a mechanically and chemi-

cally polished Nb sample23), the value of the plasmon wave-

length obtained (kp¼ 769 nm) is higher in comparison with

most of the periods obtained in our irradiation experiments.

However, the value of the refractive index was obtained

from a smooth surface of single Nb crystals at room tempera-

ture, and, therefore, these values could not be suitable when

the metals are heated by high intensity femtosecond laser

pulses, and the Nb is already covered by nano and micro-

structures or an oxide compound. The roughness of the Nb

surface increases the real part of the effective refractive

index between the metal/air interface, and so the reduction

of the ripple period will occur.12 Besides, the interband tran-

sitions contribute to the absorption at frequencies well below

0.5 eV for the bcc transition metals,24 so the combination of

the Dudre model and the interband response must be taken

into consideration to estimate the value of the dielectric con-

stant (em¼ eDþ eIB). As it occurs with the Ni,22 this inter-

band contribution will slightly decrease the period compared

to the one calculated from the dielectric constant, based

upon only a Drude type absorption dependence.

However, among the perpendicular LIPSS obtained, we

have not detected a period dependence with the laser fluence

in the range tested (table on Figure 3). This insensitivity of

FIG. 7. AFM analysis of Niobium surface after femtosecond laser irradiation at 47 mJ�cm�2 and 0.3 mm�s�1 (302 pulses). (a) FESEM micrograph; (b) higher

magnification AFM 3D image of (a); and (c) cross section profile by the line showed on (b).

173101-5 Pan et al. J. Appl. Phys. 115, 173101 (2014)
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the laser energy density on the period for both LSFL and

HSFL differs from previous works based on the coupling of

the SP and the laser light, where the interspaces become

shorter near the ablation threshold as the laser energy fluence

decreases.14,25

IV. CONCLUSIONS

In this work, it is reported for the first time the texturing

of the Nb surface with LIPSS by femtosecond laser multi-

pulse ablation in a range of laser fluences slightly above the

ablation thresholds.

Attending the discussion involving the formation mech-

anism of LIPSS, two different stages can be observed on the

corrugation of our metal surface: First, the generation of the

perpendicular LSFL (KLSFL? � 600 nm) and the parallel

HSFL (KHSFL|| � 100 nm), and second, the development of

perpendicular HSFL which period is half of KLSFL (KHSFL?

� 300 nm). The morphological evolution mechanism that

generates the HSFL due to the splitting in two of the LSFL is

explained by the redistribution of the electric field intensity

on the metal surface.

This method of micro/nanostructuring allows controlling

the grating period by the number of laser shots applied (fixing

the sample scan speed). Table I summarizes the ranges of

number of pulses applied in order to obtain the LSFL and

HSFL perpendicular to the beam polarization, the coexistence

between both perpendicular structures and the parallel HSFL.

From our understanding, considering the insensitivity of

the periods obtained with the laser fluence range tested and

the impossibility of explanation of parallel HSFL by the

plasmonic model, the most likely interpretation seems to be

the efficacy factor theory along a transient change of the re-

fractive index. However, more theoretical and experimental

work would be required in order to establish an accurate

physical model on the Nb surface texturing.
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