6,067 research outputs found
An experience of modularity through design
We aim to utilise the experiences of a marine industry-based design team to determine the need for research into a modular design methodology in an industrial environment. In order to achieve this we couple the outcome of a current design project with the findings of a recent literature survey with the objectives of firstly, clarifying why a methodology is required and, secondly, defining the key elements which the methodology would have to realise or address. The potential benefits of modularity have long been recognised in the shipbuilding industry. Many shipbuilders adopt a 'module' approach to ship construction whereby the ship structure is separated into a number of large structural 'blocks' to ease manufacture and manoeuvrability during construction. However, as understanding of the capabilities of modularity as a design tool develops there is increased interest in capitalising on the differing life phase benefits of modularity such as reduced design costs and time, increased ease of maintenance, upgrade, re-use, redesign and standardisation across individual products and product families. This is especially pertinent in naval shipbuilding where the maintenance of a class of ship requires that all previously designed ships in that class must be of similar outfitting and must be able to interface with the new ship, in terms of propulsion, weapons, communications and electronics, and thus often require some form of retrofit. Therefore, many shipbuilders are moving from viewing modularity as a purely 'manufacturing' principle to a design centred principle. However, as noted by Chang and Ward 'none of the design theories or tools in the mechanical world serves as an articulate procedure for designers to follow in practising modular design'. Thus, despite the identification of a need to introduce modular principles at an earlier stage than detail design and construction, there is little aid in the form of tools, techniques and methodologies for designers in practice
Photometric Monitoring of the Gravitationally Lensed Ultraluminous BAL Quasar APM08279+5255
We report on one year of photometric monitoring of the ultraluminous BAL
quasar APM 08279+5255. The temporal sampling reveals that this gravitationally
lensed system has brightened by ~0.2 mag in 100 days. Two potential causes
present themselves; either the variability is intrinsic to the quasar, or it is
the result of microlensing by stars in a foreground system. The data is
consistent with both hypotheses and further monitoring is required before
either case can be conclusively confirmed. We demonstrate, however, that
gravitational microlensing can not play a dominant role in explaining the
phenomenal properties exhibited by APM 08279+5255. The identification of
intrinsic variability, coupled with the simple gravitational lensing
configuration, would suggest that APM 08279+5255 is a potential golden lens
from which the cosmological parameters can be derived and is worthy of a
monitoring program at high spatial resolution.Comment: 17 pages, with 2 figures. Accepted for publication in P.A.S.
The role of quantum fluctuations in the optomechanical properties of a Bose-Einstein condensate in a ring cavity
We analyze a detailed model of a Bose-Einstein condensate trapped in a ring
optical resonator and contrast its classical and quantum properties to those of
a Fabry-P{\'e}rot geometry. The inclusion of two counter-propagating light
fields and three matter field modes leads to important differences between the
two situations. Specifically, we identify an experimentally realizable region
where the system's behavior differs strongly from that of a BEC in a
Fabry-P\'{e}rot cavity, and also where quantum corrections become significant.
The classical dynamics are rich, and near bifurcation points in the mean-field
classical system, the quantum fluctuations have a major impact on the system's
dynamics.Comment: 11 pages, 11 figures, submitted to PR
Self-synchronization and dissipation-induced threshold in collective atomic recoil lasing
Networks of globally coupled oscillators exhibit phase transitions from incoherent to coherent states. Atoms interacting with the counterpropagating modes of a unidirectionally pumped high-finesse ring cavity form such a globally coupled network. The coupling mechanism is provided by collective atomic recoil lasing, i.e., cooperative Bragg scattering of laser light at an atomic density grating, which is self-induced by the laser light. Under the rule of an additional friction force, the atomic ensemble is expected to undergo a phase transition to a state of synchronized atomic motion. We present the experimental investigation of this phase transition by studying the threshold behavior of this lasing process
Optomechanical self-structuring in cold atomic gases
The rapidly developing field of optomechanics aims at the combined control of
optical and mechanical (solid-state or atomic) modes. In particular, laser
cooled atoms have been used to exploit optomechanical coupling for
self-organization in a variety of schemes where the accessible length scales
are constrained by a combination of pump modes and those associated to a second
imposed axis, typically a cavity axis. Here, we consider a system with many
spatial degrees of freedom around a single distinguished axis, in which two
symmetries - rotations and translations in the plane orthogonal to the pump
axis - are spontaneously broken. We observe the simultaneous spatial
structuring of the density of a cold atomic cloud and an optical pump beam. The
resulting patterns have hexagonal symmetry. The experiment demonstrates the
manipulation of matter by opto-mechanical self-assembly with adjustable length
scales and can be potentially extended to quantum degenerate gases.Comment: 20 pages, 6 figure
Serum Vitamin D Levels and Polycystic Ovary syndrome: A Systematic Review and Meta-Analysis
Citation: He, C. L., Lin, Z., Robb, S. W., & Ezeamama, A. E. (2015). Serum Vitamin D Levels and Polycystic Ovary syndrome: A Systematic Review and Meta-Analysis. Nutrients, 7(6), 4555-4577. doi:10.3390/nu7064555Vitamin D deficiency (VDD) is common in women with and without polycystic ovary syndrome (PCOS) and may be associated with metabolic and endocrine disorders in PCOS. The aim of this meta-analysis is to assess the associations of serum vitamin D levels with metabolic and endocrine dysregulations in women with PCOS, and to determine effects of vitamin D supplementation on metabolic and hormonal functions in PCOS patients. The literature search was undertaken through five databases until 16 January 2015 for both observational and experimental studies concerning relationships between vitamin D and PCOS. A total of 366 citations were identified, of which 30 were selected (n = 3182). We found that lower serum vitamin D levels were related to metabolic and hormonal disorders in women with PCOS. Specifically, PCOS patients with VDD were more likely to have dysglycemia (e.g., increased levels of fasting glucose and homeostatic model assessment-insulin resistance index (HOMA-IR)) compared to those without VDD. This meta-analysis found no evidence that vitamin D supplementation reduced or mitigated metabolic and hormonal dysregulations in PCOS. VDD may be a comorbid manifestation of PCOS or a minor pathway in PCOS associated metabolic and hormonal dysregulation. Future prospective observational studies and randomized controlled trials with repeated VDD assessment and better characterization of PCOS disease severity at enrollment are needed to clarify whether VDD is a co-determinant of hormonal and metabolic dysregulations in PCOS, represents a consequence of hormonal and metabolic dysregulations in PCOS or both
Ensuring Treatment Fidelity in a Multi-site Behavioral Intervention Study: Implementing NIH Behavior Change Consortium Recommendations in the SMART Trial
The Stories and Music for Adolescent/Young Adult Resilience during Transplant (SMART) study (R01NR008583; U10CA098543; U10CA095861) is an ongoing multi-site Children’s Oncology Group randomized clinical trial testing the efficacy of a therapeutic music video intervention for adolescents/young adults (11–24 years of age) with cancer undergoing stem cell transplant. Treatment fidelity strategies from our trial are consistent with the NIH Behavior Change Consortium Treatment Fidelity Workgroup (BCC) recommendations and provide a successful working model for treatment fidelity implementation in a large, multi-site behavioral intervention study. In this paper we summarize 20 specific treatment fidelity strategies used in the SMART trial and how these strategies correspond with NIH BCC recommendations in 5 specific areas: 1) study design, 2) training providers, 3) delivery of treatment, 4) receipt of treatment, and 5) enactment of treatment skills. Increased use and reporting of treatment fidelity procedures is essential in advancing the reliability and validity of behavioral intervention research. The SMART trial provides a strong model for the application of fidelity strategies to improve scientific findings and addresses the absence of published literature illustrating the application of BCC recommendations in behavioral intervention studies
Atomic interaction effects in the superradiant light scattering from a Bose-Einstein condensate
We investigate the effects of the atomic interaction in the Superradiant
Rayleigh scattering from a Bose-Einstein condensate driven by a far-detuned
laser beam. We show that for a homogeneous atomic sample the atomic interaction
has only a dispersive effect, whereas in the inhomogeneous case it may increase
the decay of the matter-wave grating.Comment: 12 pages, 4 figures, presented to the XII International Laser Physics
Workshop, August 24-29, Hamburg, to be published in Laser Physic
A perpetual switching system in pulmonary capillaries
Of the 300 billion capillaries in the human lung, a small fraction meet normal oxygen requirements at rest, with the remainder forming a large reserve. The maximum oxygen demands of the acute stress response require that the reserve capillaries are rapidly recruited. To remain primed for emergencies, the normal cardiac output must be parceled throughout the capillary bed to maintain low opening pressures. The flow-distributing system requires complex switching. Because the pulmonary microcirculation contains contractile machinery, one hypothesis posits an active switching system. The opposing hypothesis is based on passive switching that requires no regulation. Both hypotheses were tested ex vivo in canine lung lobes. The lobes were perfused first with autologous blood, and capillary switching patterns were recorded by videomicroscopy. Next, the vasculature of the lobes was saline flushed, fixed by glutaraldehyde perfusion, flushed again, and then reperfused with the original, unfixed blood. Flow patterns through the same capillaries were recorded again. The 16-min-long videos were divided into 4-s increments. Each capillary segment was recorded as being perfused if at least one red blood cell crossed the entire segment. Otherwise it was recorded as unperfused. These binary measurements were made manually for each segment during every 4 s throughout the 16-min recordings of the fresh and fixed capillaries (>60,000 measurements). Unexpectedly, the switching patterns did not change after fixation. We conclude that the pulmonary capillaries can remain primed for emergencies without requiring regulation: no detectors, no feedback loops, and no effectors-a rare system in biology. NEW & NOTEWORTHY The fluctuating flow patterns of red blood cells within the pulmonary capillary networks have been assumed to be actively controlled within the pulmonary microcirculation. Here we show that the capillary flow switching patterns in the same network are the same whether the lungs are fresh or fixed. This unexpected observation can be successfully explained by a new model of pulmonary capillary flow based on chaos theory and fractal mathematics
- …
