143 research outputs found

    Schwinger-Dyson operator of Yang-Mills matrix models with ghosts and derivations of the graded shuffle algebra

    Full text link
    We consider large-N multi-matrix models whose action closely mimics that of Yang-Mills theory, including gauge-fixing and ghost terms. We show that the factorized Schwinger-Dyson loop equations, expressed in terms of the generating series of gluon and ghost correlations G(xi), are quadratic equations S^i G = G xi^i G in concatenation of correlations. The Schwinger-Dyson operator S^i is built from the left annihilation operator, which does not satisfy the Leibnitz rule with respect to concatenation. So the loop equations are not differential equations. We show that left annihilation is a derivation of the graded shuffle product of gluon and ghost correlations. The shuffle product is the point-wise product of Wilson loops, expressed in terms of correlations. So in the limit where concatenation is approximated by shuffle products, the loop equations become differential equations. Remarkably, the Schwinger-Dyson operator as a whole is also a derivation of the graded shuffle product. This allows us to turn the loop equations into linear equations for the shuffle reciprocal, which might serve as a starting point for an approximation scheme.Comment: 13 pages, added discussion & references, title changed, minor corrections, published versio

    Sofic-Dyck shifts

    Full text link
    We define the class of sofic-Dyck shifts which extends the class of Markov-Dyck shifts introduced by Inoue, Krieger and Matsumoto. Sofic-Dyck shifts are shifts of sequences whose finite factors form unambiguous context-free languages. We show that they correspond exactly to the class of shifts of sequences whose sets of factors are visibly pushdown languages. We give an expression of the zeta function of a sofic-Dyck shift

    A differential identity for Green functions

    Get PDF
    If P is a differential operator with constant coefficients, an identity is derived to calculate the action of exp(P) on the product of two functions. In many-body theory, P describes the interaction Hamiltonian and the identity yields a hierarchy of Green functions. The identity is first derived for scalar fields and the standard hierarchy is recovered. Then the case of fermions is considered and the identity is used to calculate the generating function for the Green functions of an electron system in a time-dependent external potential.Comment: 14 page

    Iterated Binomial Sums and their Associated Iterated Integrals

    Full text link
    We consider finite iterated generalized harmonic sums weighted by the binomial (2kk)\binom{2k}{k} in numerators and denominators. A large class of these functions emerges in the calculation of massive Feynman diagrams with local operator insertions starting at 3-loop order in the coupling constant and extends the classes of the nested harmonic, generalized harmonic and cyclotomic sums. The binomially weighted sums are associated by the Mellin transform to iterated integrals over square-root valued alphabets. The values of the sums for NN \rightarrow \infty and the iterated integrals at x=1x=1 lead to new constants, extending the set of special numbers given by the multiple zeta values, the cyclotomic zeta values and special constants which emerge in the limit NN \rightarrow \infty of generalized harmonic sums. We develop algorithms to obtain the Mellin representations of these sums in a systematic way. They are of importance for the derivation of the asymptotic expansion of these sums and their analytic continuation to NCN \in \mathbb{C}. The associated convolution relations are derived for real parameters and can therefore be used in a wider context, as e.g. for multi-scale processes. We also derive algorithms to transform iterated integrals over root-valued alphabets into binomial sums. Using generating functions we study a few aspects of infinite (inverse) binomial sums.Comment: 62 pages Latex, 1 style fil

    The Hopf Algebra of Renormalization, Normal Coordinates and Kontsevich Deformation Quantization

    Full text link
    Using normal coordinates in a Poincar\'e-Birkhoff-Witt basis for the Hopf algebra of renormalization in perturbative quantum field theory, we investigate the relation between the twisted antipode axiom in that formalism, the Birkhoff algebraic decomposition and the universal formula of Kontsevich for quantum deformation.Comment: 21 pages, 15 figure

    Backward error analysis and the substitution law for Lie group integrators

    Full text link
    Butcher series are combinatorial devices used in the study of numerical methods for differential equations evolving on vector spaces. More precisely, they are formal series developments of differential operators indexed over rooted trees, and can be used to represent a large class of numerical methods. The theory of backward error analysis for differential equations has a particularly nice description when applied to methods represented by Butcher series. For the study of differential equations evolving on more general manifolds, a generalization of Butcher series has been introduced, called Lie--Butcher series. This paper presents the theory of backward error analysis for methods based on Lie--Butcher series.Comment: Minor corrections and additions. Final versio

    A note on the factorization conjecture

    Full text link
    We give partial results on the factorization conjecture on codes proposed by Schutzenberger. We consider finite maximal codes C over the alphabet A = {a, b} with C \cap a^* = a^p, for a prime number p. Let P, S in Z , with S = S_0 + S_1, supp(S_0) \subset a^* and supp(S_1) \subset a^*b supp(S_0). We prove that if (P,S) is a factorization for C then (P,S) is positive, that is P,S have coefficients 0,1, and we characterize the structure of these codes. As a consequence, we prove that if C is a finite maximal code such that each word in C has at most 4 occurrences of b's and a^p is in C, then each factorization for C is a positive factorization. We also discuss the structure of these codes. The obtained results show once again relations between (positive) factorizations and factorizations of cyclic groups

    Learning Rational Functions

    Get PDF
    International audienceRational functions are transformations from words to words that can be defined by string transducers. Rational functions are also captured by deterministic string transducers with lookahead. We show for the first time that the class of rational functions can be learned in the limit with polynomial time and data, when represented by string transducers with lookahead in the diagonal-minimal normal form that we introduce

    Schwinger-Dyson operators as invariant vector fields on a matrix-model analogue of the group of loops

    Full text link
    For a class of large-N multi-matrix models, we identify a group G that plays the same role as the group of loops on space-time does for Yang-Mills theory. G is the spectrum of a commutative shuffle-deconcatenation Hopf algebra that we associate to correlations. G is the exponential of the free Lie algebra. The generating series of correlations is a function on G and satisfies quadratic equations in convolution. These factorized Schwinger-Dyson or loop equations involve a collection of Schwinger-Dyson operators, which are shown to be right-invariant vector fields on G, one for each linearly independent primitive of the Hopf algebra. A large class of formal matrix models satisfying these properties are identified, including as special cases, the zero momentum limits of the Gaussian, Chern-Simons and Yang-Mills field theories. Moreover, the Schwinger-Dyson operators of the continuum Yang-Mills action are shown to be right-invariant derivations of the shuffle-deconcatenation Hopf algebra generated by sources labeled by position and polarization.Comment: 24 page

    Hopf algebras in dynamical systems theory

    Full text link
    The theory of exact and of approximate solutions for non-autonomous linear differential equations forms a wide field with strong ties to physics and applied problems. This paper is meant as a stepping stone for an exploration of this long-established theme, through the tinted glasses of a (Hopf and Rota-Baxter) algebraic point of view. By reviewing, reformulating and strengthening known results, we give evidence for the claim that the use of Hopf algebra allows for a refined analysis of differential equations. We revisit the renowned Campbell-Baker-Hausdorff-Dynkin formula by the modern approach involving Lie idempotents. Approximate solutions to differential equations involve, on the one hand, series of iterated integrals solving the corresponding integral equations; on the other hand, exponential solutions. Equating those solutions yields identities among products of iterated Riemann integrals. Now, the Riemann integral satisfies the integration-by-parts rule with the Leibniz rule for derivations as its partner; and skewderivations generalize derivations. Thus we seek an algebraic theory of integration, with the Rota-Baxter relation replacing the classical rule. The methods to deal with noncommutativity are especially highlighted. We find new identities, allowing for an extensive embedding of Dyson-Chen series of time- or path-ordered products (of generalized integration operators); of the corresponding Magnus expansion; and of their relations, into the unified algebraic setting of Rota-Baxter maps and their inverse skewderivations. This picture clarifies the approximate solutions to generalized integral equations corresponding to non-autonomous linear (skew)differential equations.Comment: International Journal of Geometric Methods in Modern Physics, in pres
    corecore