
HAL Id: hal-00692341
https://hal.inria.fr/hal-00692341

Submitted on 29 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Rational Functions
Adrien Boiret, Aurélien Lemay, Joachim Niehren

To cite this version:
Adrien Boiret, Aurélien Lemay, Joachim Niehren. Learning Rational Functions. 16th International
Conference on Developments of Language Theory, Apr 2012, Taipee, Taiwan. �hal-00692341�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49900398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00692341
https://hal.archives-ouvertes.fr

Learning Rational Functions

Adrien Boiret1,3, Aurélien Lemay2,3, and Joachim Niehren1,3

1 Inria, Lille
2 University of Lille

3 Mostrare project of Inria & Lifl (Cnrs Umr 8022)

Abstract. Rational functions are transformations from words to words
that can be defined by string transducers. Rational functions are also
captured by deterministic string transducers with lookahead. We show
for the first time that the class of rational functions can be learned in
the limit with polynomial time and data, when represented by string
transducers with lookahead in the diagonal-minimal normal form that
we introduce.

1 Introduction

Learning algorithms for regular languages of words or trees are usually
based on the Myhill-Nerode theorem, that is on an algebraic characteri-
zation of the unique minimal automaton recognizing the target language
[14,2,6,13]. The learning problem is then to identify this unique automa-
ton in the limit from finite samples of positive and negative examples
that characterize the language. For various classes of automata, this can
be done in polynomial time in the size of the sample, while there exist
characteristic samples of polynomial cardinality in the size of the target
automaton. This approach has been established for finite deterministic
automata (Dfas) [12,16], for deterministic tree automata [17], and for
deterministic stepwise tree automata for unranked trees [3].

Learning algorithms for classes of transformation on words or trees can
be obtained in an analoguous manner, if they can be defined by an appro-
priate class of deterministic transducers that enjoys a Myhill-Nerode type
theorem. The classical example is the class of deterministic (subsequen-
tial) string transducers (Dts) [5,18]. It characterizes the unique minimal
Dt for the target transformation, that is compatible with the domain
and earliest in output production. Such transducers can be learned by
the Ostia algorithm from finite samples of input-output pairs, under the
assumption that a Dfa defining the domain is given [19]. More recently,
this result could be extended to the class of deterministic top-down tree
transducers with domain inspection [10,15]. Furthermore, a unique min-
imization result – that can be based on a Myhill-Nerode theorem – was
obtained for deterministic bottom-up tree transducers [11].

The motivation of the present article is to extend these results to
classes of transducers with look-ahead. The natural starting point is the
class of deterministic string transducers with lookahead (Dt`), which cap-
ture the class of rational functions (see e.g. [1]), i.e. they have the same ex-
pressiveness as functional string transducers [8]. Based on another Myhill-
Nerode type theorem, Reutenaurer and Schützenberger showed in [20] that
there exists a unique minimal look-ahead automaton compatible with the
domain that can be used to define some Dt`. The underlying Dt itself
can be made earliest and minimal. This yields a unique two-phase minimal
normal form for rational functions.

The learning problem – that remained open for many years – is whether
one can learn rational functions from finite samples of input-output ex-
amples and a Dfa for the domain. In this paper, we contribute a positive
answer in Gold’s learning model from polynomial time and data, under the
assumption that rational functions are represented by diagonal-minimal
normal form. This is a new class of normal forms that we introduce con-
commitantly with a new learning algorithm based on diagonalization. The
main problem was to overcome the difficulty to identify a two-phase min-
imal normal form from examples.

Outline. We first recall traditional results on rational and subsequential
functions (Section 2) and then the result of Reutenauer and Schützen-
berger on two-phase Dt` normalization (Section 3). In section 4, we indi-
cate how to build a look-ahead from a basic test over suffixes. In Section
6, we indicate how this test can be done from a finite sample which leads
to section 5 where we present the complete learning algorithm.

2 Rational Functions

We assume an input alphabet Σ and an output alphabet ∆, both of which
are finite sets. Input words in Σ∗ are ranged over by u and v and output
words in ∆∗ by w. We are interested in partial functions τ ⊆ Σ∗ × ∆∗.
We denote the domain of a partial function by dom(τ) and freely write
τ(u) = w instead of (u,w) ∈ τ .

A string transducer is a tuple M = 〈Σ,∆,Q, init, rul,fin〉 where Σ
and ∆ are finite alphabet for input and output words, Q is a finite set of
states, init ⊆ Q is a set of initial states, fin ⊆ Q×∆∗ the set of final states
equipped with output words, and rul ⊆ (Q×Σ)× (∆∗×Q) is a finite set

of transitions. We say that q
a/w−−→ q′ is a rule of M if (q, a, w, q′) ∈ rul,

and that q w−→ is a final output if (q, w) ∈ fin. This arrow notion is also
used in graphical representations of string transducers.

q0 qa

a/ε

b/b

a/ab/b

a

ε

q0 qa

q′0 qb

a/a

a/a, b/b

b/b

a/ε, b/b

ε

ε

q0 qb

b/b

a/ε

a/ε

b/b

ε

Fig. 1. (a) A Dt for τ1. (b) A string transducer for τ2. (c) A Dt for τ3.

We denote by [[M]] ⊆ Σ∗ × ∆∗ the set of pairs (u,w) such that w is
an output word that can be produced from input word u by M . More
formally, a pair (u,w) belongs to [[M]] if there exists an index n, decom-
positions u = a1 · . . . · an and w = w1 · . . . · wn · wf , and a sequence of

states q0 · . . . · qn such that q0 ∈ init, qi−1
ai/wi−−−→ qi is a rule of M for

all 1 ≤ i ≤ n, and qn
wf−−→ is a final output. A partial function is called

rational if it is equal to [[M]] for some string transducer M , which is then
called a functional transducer.

A string transducer is called deterministic or a Dt (or subsequential)
if it has at most one initial state and if rul and fin are partial functions.
Clearly, every Dt defines a rational function. Such functions are called
subsequential, a notion going back to Schützenberger.

Example 1. The total function τ1 on words with alphabet {a, b} that
erases all a’s immediately followed by b is subsequential. See Fig. 1 for
a Dt defining it. Notice that the final output is needed, for instance for
transducing the word aa correctly to itself.

The function τ2 that deletes all a’s in words whose last letter is b while
performing the identity otherwise is rational, but not subsequential since
the last letter cannot be predicted deterministically.

But if one restricts the domain of τ2 to words ending by b, we obtain
a partial function τ3 which is subsequential, as illustrated in Fig. 1.

We denote by Mq the transducer equal to M except that q is the only
initial state. A word u ∈ Σ∗ reaches a state q if there is a sequence of
letters a1 . . . an = u and of states q0 . . . qn such that q0 ∈ init, qn = q and

qi−1
ai/wi−−−→ qi is a rule of M for all 1 ≤ i ≤ n for some wi. We call a Dt

M earliest if for all states q ofM except the initial one, either the domain
of [[Mq]] is the empty set or the least common prefix of all words in the
range of [[Mq]] is the empty word.

Theorem 1 (Choffrut (1979) [4,5]). Any subsequential function can
be defined by some earliest Dt. The earliest Dt with a minimal number
of states for a subsequential function is unique modulo state renaming.

The Dts in Fig. 1 (a) and (c) are both earliest and minimal. Note that
a smaller single state Dt would be sufficient for defining τ3 if the domain
could be checked externally, which is not the case in this model.

Oncina and Varo [19] used the Myhill-Nerode behind Theorem 1 as a
theoretical ground for a learning algorithm for subsequential functions τ
from a finite sample S ⊆ τ and a Dfa D recognizing the domain of τ .

Theorem 2 (Oncina and Varo (1996)). For any Dfa D there exists
a learning algorithm OstiaD that identifies subsequential functions whose
domain is recognized by D from polynomial time and data.

That is: for any Dt M defining a subsequential function τ whose
domain is recognized by D there exists a finite sample S ⊆ τ called char-
acteristic for τ , whose size is polynomial in the size of M , such that from
any sample S′ ⊆ τ that contains S, OstiaD(S′) computes a Dt defining
τ in polynomial time in the size of S′.

3 Transducers with Look-Ahead

As stated before, rational functions are captured by deterministic trans-
ducers with look-ahead. The look-ahead can be performed by some Dfa
that annotates the letters of the input word by states from right to left
in a preprocessing step. The string transducer then processes the anno-
tated word from left to right. More formally, we can identify a Dfa A
with alphabet Σ and state set P with a string transducer that reads the
word right to left, while always outputing the pair of the current letter
and the current state: an automaton rule q a−→ q′ of A is considered as a

transducer rule q
a/(a,q′)−−−−−→ q′. This way, the rational function [[A]] maps a

word u ∈ Σ∗ to the identical word but annotated with look-ahead states
[[A]](u) ∈ (Σ × P)∗. Furthermore, the Dfa used as a lookahead must be
complete, so that it defines a total function.

A deterministic string transducer with look-ahead (Dt`) is a pair N =
〈A,M〉 such that A is a Dfa with alphabet Σ and state set P called the
look-ahead, and M is a Dt with signature Σ × P with state set Q. A
Dt` N = 〈A,M〉 defines the rational function [[N]] = [[M]] ◦ [[A]]: an input
word u ∈ Σ∗ is first annotated with states of the look-ahead A from right
to left, and then transformed by Dt M from left to right. The following
theorem is known as the decomposition theorem of Elgot and Mezei [8].

Theorem 3 (Elgot and Mezei (1965)). A partial function τ is rational
if and only if it is defined by some Dt`.

pε

pa

pb

q0

a

b

a, b

a, b

(a, pa)/a; (b, pa)/b

(a, pb)/ε; (b, pb)/b

ε

Fig. 2. The look-ahead for τ2 and a matching Dt.

10pt

pε

pa

pb

q0 qb

a

b

a, b

a, b

(b, pb)/b
(a, pb)/ε

(a, pb)/ε

(b, pb)/b

ε

Fig. 3. A look-ahead for τ3, and a matching Dt, both compatible with their domains.

Given a string transducer M that defines a partial function, the idea
is to use a look-ahead automaton to annotate positions by the set P of
those states of M by which a final state can be reached at the end of the
word. One can then define a Dt` N which simulates M except that it
always selects an arbitrary transition leading to some state of P . Which
of these transition is selected does not matter since M is functional

Example 2. A Dt` for τ2 is given in Fig. 2. Note that 3 look-ahead states
are needed in order to distinguish suffixes ending with b or not.

We next study the question of whether there exists a unique minimal
lookahead automaton for any rational function. We obtain a positive re-
sult by reformulating a Myhill-Nerode style theorem for bi-machines from
Reutenauer and Schütenberger [20].

A relation ∼ over Σ∗×Σ∗ is called a left-congruence if v1 ∼ v2 implies
u · v1 ∼ u · v2 for all input words v1, v2, u. Every look-ahead automaton A
defines a left-congruence ∼A such that v1 ∼A v2 if and only if v1 and v2 are
evaluated to the same state by A (from the right to the left). Conversely,
for any left-congruence ∼ with a finite number of equivalence classes, we
can define a look-ahead automaton A(∼) such that ∼ is equal to ∼A. The
states of A are the equivalence classes [u]∼ of input words u, the unique
initial state is the equivalence class of the empty word, and the transition
rules have the form [a · u]∼

a←− [u]∼ for all u ∈ Σ∗ and a ∈ Σ. Final states
are irrelevant for look-ahead automata.

Domains of partial functions τ need to be treated carefully for look-
ahead minimization. Let the left residual of its domain be dom(τ)v−1 =
{u | u·v ∈ dom(τ)}. The domain induces a left-congruence on suffixes that
we call compatibility with the domain: v1 and v2 are compatible with the

dom(τ) if dom(τ)v−11 = dom(τ)v−12 . A relation ∼ is said compatible with
dom(τ) if it is a refinement of the compatibility relation, i.e., if v1 ∼ v2
implies that v1 and v2 are compatible with dom(τ). Similarly, a look-ahead
automaton A is compatible with a domain if ∼A is.

Let τ be a rational function. The difference between two output words
is diff (w · w1, w · w2) = (w1, w2) such that the common prefix of w1 and
w2 is empty. The difference between two input words modulo τ is defined
by diff τ (v1, v2) = {diff (τ(u · v1), τ(u · v2)) | u · v1, u · v2 ∈ dom(τ)}. This
allows to define a left-congruence ∼τ that is compatible with dom(τ):

Definition 1. v1∼τv2 if and only if v1 and v2 are compatible with dom(τ)
and #diff τ (v1, v2) <∞.

Example 3. The equivalence τ1 has a single class since diff τ (v1, v2) is
finite for every v1, v2 ∈ Σ∗. Function τ2 has two equivalence classes,
since v1 ∼τ2 v2 if either both end with b or none. Indeed, A(∼τ2) is
the look-ahead automaton in Fig. 2. Let un = an · bn. Then we have
τ2(un ·v1) = un ·v1 while τ2(un ·v2) = bn ·τ2(v2). So diff τ2(v1, v2) contains
the pairs (an · bn · v1, bn · τ1(v2)) for all n, which as an infinite cardinality.
Subsequential function τ3 has 3 equivalence classes: a single state look-
ahead automaton for τ3 would not be compatible with the domain as for
instance dom(τ3)a

−1 6= dom(τ3)b
−1. The Dt` with minimal look-ahead

for τ3 that is compatible with the domain has three states and is also the
look-ahead given in Fig. 3. Note that neither the look-ahead nor the Dt
are size minimal. Fig. 1 shows that there is no need for a look-ahead and
Fig. 2 shows that for this look-ahead, τ3 only needs a one-state Dt. �

We say that a left congruence ∼ partitions ∼τ if ∼ is a subset of
∼τ . For every partial function τ and an equivalence relation ∼ on Σ∗,
we can define a unique partial function σ with minimal domain such that
τ = σ◦[[A(∼)]]. This function σ, that we denote by σ(τ,∼), can be applied
only to annotated words in the image of [[A(∼)]]; it ignores annotations
and applies τ . The following result was originally stated for bimachines.

Theorem 4 (Reutenauer & Schützenberger [20]). For any ratio-
nal function τ the left-congruence ∼τ has a finite number of equivalence
classes. Furthermore, for any other left-congruence ∼ partitionning ∼τ
into finitely many classes, the function σ(τ,∼) is subsequential.

As a result, any look-ahead for τ compatible with the domain of τ
has the form A(∼) for some left-congruence ∼ that partitions ∼τ . Also,
σ(τ,∼) being subsequential, Theorem 1 shows that it can be defined by a
unique minimal Dt, that we denote byMτ (∼). The unique ’right-minimal’
Dt` of τ then is the Dt` Nτ (∼) equal to 〈A(∼),Mτ (∼)〉.

4 Building the Look-Ahead Automaton

Our next objective is to find a suitable look-ahead automaton for the
unknown target function τ , of which we only know the domain and a
finite sample of input-output pairs. One might want to identify the mini-
mal look-ahead automaton A(∼τ), but we cannot hope to decide whether
v1∼τv2 for any two words v1 and v2, since we would have to check whether
diff τ (v1, v2) is finite or infinite. This is difficult to archieve from a finite
set of examples. We will work around this problem based on the following
lemma which provides a bound on the cardinality of diff τ (v1, v2).

Lemma 1. Let τ ⊆ Σ∗ ×∆∗ be a rational function, ∼ a left congruence
that partitions ∼τ and m be the number of states of Mτ (∼). If v1 ∼ v2
then #diff τ (v1, v2) ≤ m.

Proof. With N = Nτ (∼), v1 ∼ v2 implies v1∼τv2, so that dom(τ)v−11 =
dom(τ)v−12 . We denote by [[N]]u(v) (resp. [[N]]v(u)) the output of v (resp.
u) when reading u · v. Then for any prefix u ∈ dom(τ)v−11 , τ(u · vi) =
[[N]]vi(u) · [[N]]u(vi). By construction, [[N]]v1(u) = [[N]]v2(u), so diff (τ(u ·
v1), τ(u · v2)) = diff ([[N]]u(v1), [[N]]u(v2)). As [[N]]u(vi) only depends on
the state reached by u in A(∼), the number of values of ([[N]]u(v1),
[[N]]u(v2)) for varying u is bounded by the number of states ofMτ (∼), i.e.
#diff τ (v1, v2) ≤ m. �

Given a natural number m we define the binary relation Cmτ on input
words such that (v1, v2) ∈ Cmτ if #diff τ (v1, v2) ≤ m. In this case, we say
that v1 is m-close to v2. As we will show in Section 6 for any m, we can
characterize relation Cmτ by finite samples of input-output pairs for τ .

Let mτ be the number of states in Mτ (∼τ). By Lemma 1 we know
that ∼τ = Cmττ . So if we knew this bound mτ and if we could construct
a look-ahead automaton from Cmττ , then we were done. We first consider
how to construct a look-ahead automaton from Cmτ under the assumption
that m ≥ mτ .

Our algorithm La given in Fig. 4 receives as inputs a binary relation
R on input words and a natural number l, and returns as output a min-
imal deterministic finite automata, or raises an exception. Algorithm La
is motivated by the Myhill-Nerode theorem for deterministic finite au-
tomata, in that for l greater than the index of ∼τ and R = Cmττ = ∼τ
it constructs the minimal deterministic automaton A(∼τ). We will also
apply it, however, in cases where R is even not an equivalence relation.
In particular, relation R = Cmτ may fail to be transitive for m < mτ . In
this case we may have to force our algorithm to terminate. We do so by
bounding the number of states that is to be generated by l.

fun La(R, l) % where R ⊆ Σ∗ ×Σ∗, l ∈ N in
1:let Q = Set.new({ε}), Agenda = Queue.new([ε])
2:while Agenda.isnonempty() do
3: v := Agenda.pop()
4: for a ∈ Σ such that a · v increases do
5: if 6 ∃v′ ∈ Q such that (a · v, v′) ∈R
6: then Agenda.push(a · v), Q.add(a · v) else skip
7: if Q.card() > l then exception “too many states” else skip
8:let rul = {v a−→ v′ | v, v′ ∈ Q, (a · v, v′) ∈R} in
9:return 〈Σ,Q, {ε}, ∅, rul〉

Fig. 4. Construction of look-ahead automata.

Algorithm La proceeds as follows. It fixes some total ordering on
words, such that shorter words preceed on longer words. It then behaves
as if R were a left congruences while searching for the least word in each
equivalence class of R. These least words will be the states of the out-
put automaton that La constructs. The algorithm raises an exception
if the number of such states is greater then l. It adds the transitions
v

a−→ v′ for any two states v, v′ that it discovered under the condition that
(a · v, v′) ∈ R (if several v′ fits, we pick the first in our order). We observe
the following: if R is a left congruence of finite index smaller than l then
La(R, l) terminates without exception and returns the minimal determin-
istic automata whose left-congruence is R. In particular for m ≥ mτ and
R = Cmτ (so that R = ∼τ), the algorithm returns A(∼τ). However, if
m < mτ , the only property that we can assume about relation Cmτ is that
it is contained in ∼τ . The following lemma shows a little surprisingly that
successful result are always appropriate nevertheless.

Lemma 2. Let τ be a rational function and R a relation contained in ∼τ .
Either La(R, l) raises an exception or it returns a look-ahead valid for τ .

If v1 and v2 are actually tested by the algorithm, then for v1 and v2 to
be in the same state, we need v1 R v2, and thus v1∼τv2. Then, given that
∼τ is a left-congruence, we can prove by recursion that if two words v1
and v2 reach the same state of La(R, l), then v1∼τv2. Hence, R partitions
∼τ so this La(R, l) is a valid look-ahead for τ by Theorem 4.

5 The Learning Algorithm

We next present an algorithm for learning a rational function τ from
a domain automata D with L(D) = dom(τ) and a finite sample S ⊆
τ of input-output pairs. Furthermore, our learning algorithm assumes

fun LearnD(S)
1:(m, l) := (1, 1)
2:repeat
3: try let A = La(CmS,D, l) in
4: let S′ = {([[A]](u), v) | (u, v) ∈ S)} in
5: let D′ be a Dfa that represents words of D annotated by A in
6: return 〈A,OstiaD′(S′)〉 and exit
7: catch “too many states” then
8: (m, l) := successor of (m, l) in diagonal order

Fig. 5. Learning algorithm for rational functions with domain L(D).

that there exists an oracle CmS,D that can decide whether a pair of in-
put words belongs to Cmτ . Given such an oracle, the learning algorithm
can simulate calls of algorithm La(Cmτ , l). How such an oracle can be
obtained for sufficiently rich samples S is shown in the next section.

Two unknowns remain to be fixed: a bound m for which La eventually
finds a valid look-ahead and the number l
of states of this valid look-ahead. The idea
of learning algorithm LearnD in Fig. 5 is
that to try out all pairs (m, l) in diagonally
increasing order (1, 1) < (1, 2) < (2, 1) <
(1, 3) < For any such pair (m, l) it then
calls La(CmS,D, l), until this algorithm suc-
ceeds to return an automaton. By Lemma 1,
any such automaton is a valid look-ahead for
τ . By Proposition 1, this procedure must be
successful no later than for (mτ , lτ). Finally,
the algorithm decorates the examples of S Nb of states l

Bound m

1

1

2

2

3

3

4

4

•

by applying the newly obtained look-ahead automaton, and learns the
corresponding subsequential transducer by using the Ostia algorithm.

It should be noticed that the target of this algorithm is not the Dt`
for τ with minimal look-ahead A(∼τ). The look-ahead obtained is simply
the first automaton obtained in the diagonal order such that La(CmS,D, l)
terminates successfully. We call the Dt` obtained in this way the ’diago-
nal’ Dt` of τ . Note that the diagonal Dt` of τ may be smaller that the
corresponding right-minimal Dt` with minimal look-ahead. In any case,
it may not be much bigger as stated by the following lemma.

Lemma 3. Let τ be a partial rational function with right-minimal Dt`
〈A(∼τ),M(∼τ)〉, let m be the number of states of M(∼τ), and ∼ be a
finite left-congruence that partitions ∼τ of index n. The number of states

fun CmS,D(v1, v2)
1:if L(D)v−1

1 6= L(D)v−1
2 then return false

2:else if #{diff (w1, w2) | (u · v1, w1), (u · v2, w2) ∈ S} ≤ m
3: then return true else return false

Fig. 6. Implemention of the oracle.

of the look-ahead of 〈A(∼),M(∼)〉 has then at most mn states and is of
global size O(mn2).

Indeed, to obtain the Dt M(∼), one can pick M(∼τ) and change its
transition to take into account states of A(∼) instead of those of A(∼τ).
This transducer has m states and at worse mn transitions. However, it
does not have the right domain (words annotated by states of M(∼)):
this requires a product with the Dfa of the correct domain, which has m
states. The actual Dt M(∼) being minimal, it has at most this size.

6 Characteristic Samples

It remains to show that there exists an oracle CmS,D that decides member-
ship to Cmτ for all suffuciently rich finite samples S ⊆ τ , and that the size
of such samples is polynomial in the size of the target diagonal transducer
with look-ahead. We use the function defined in Fig. 6 which when applied
to a pair of words (v1, v2) verifies that they have equal residuals for the
domain, and computes their difference on S instead of τ . In order to see
that the former can be done in polynomial time, we only need to check
that there are deterministic automata recognizing L(D)v−11 and L(D)v−12

of polynomial size.
The next question is what examples a sample S needs to contain so

that this test becomes truly equivalent to m-closeness. In order to be
usable in La, note that CmS,D(v1, v2) has to behave like Cmτ (v1, v2) only
on pairs of suffixes considered there. We define sm,l(τ) as the words cre-
ating new states in La(Cmτ (v1, v2), l) (there is at most l of them). As
the algorithm La also observes successors of sm,l, we need to define the
set km,l(τ) = sm,l(τ) ∪ {a · v | v ∈ sm,l(τ), a ∈ Σ}. We call a sample
S `-characteristic for τ with respect to m and l if every element of km,l
appears as the suffix of an input word in S and if S allows the correct
evaluation of Cmτ on those elements, i.e.:

– for every v ∈ sm,l(τ), ∃u ∈ Σ∗, w ∈ ∆∗ such that (u · v, w) ∈ S,
– for v1 ∈ sm,l, v2 ∈ km,l with (v1, v2) 6∈ Cmτ and dom(τ)v−11 = dom(τ)v−12 ,

#{diff (w1, w2) | (u · v1, w1), (u · v2, w2) ∈ S} > m.

Lemma 4. For a partial rational function τ , a Dfa D recognizing dom(τ),
and two positive integers m and l, let v1 ∈ sm,l(τ), v2 ∈ km,l(τ), if S
is a `-characteristic sample for τ with respect to m and l, then the test
CmS,D(v1, v2) returns true if and only if (v1, v2) ∈ Cmτ .

One thing that has to be checked is that there exists an `-characteristic
samples of reasonable size for any m, l. This is obvious for the cardinality.
In order to show that the length of words can also be guaranteed to be
short, one can use the following method: for any non-equivalent suffixes
v1 and v2 of different domain, one pick any set of words that allow to
obtain enough element in diff τ (v1, v2), and reduce them to a reasonable
length (of size O(|N |2)) where N is any transducer recognizing τ) using
pumping arguments.

Lemma 5. For a partial rational function τ , a Dfa D recognizing dom(τ),
two integers m and l, and a sample S `-characteristic for τ with respect
to m and l: La(CmS,D, l) = La(Cmτ , l).

In particular, if La(CmS,D, l) raises an exception if and only if La(Cmτ , l)
does. Note that we need a sample that is (globally) `-characteristic, for all
pairs 〈m, l〉 encountered during the run, i.e. all the 〈m, l〉 smaller than the
values for the diagonal Dt`. Once the look-ahead is learned, we can apply
the Ostia algorithm, which requires a sample labelled by the look-ahead,
and not on Σ∗ ×∆∗. We deal with this by labelling all the input words
in S when the look-ahead A(∼) is found. For S to be enough to learn the
subsequential transducer Mτ (∼), its labelling must contain a characteris-
tic sample for the Ostia algorithm as defined in [19]. In other words, S is
called Dt-characteristic for τ and ∼ if it contains a characteristic sample
for Mτ (∼) in Ostia, minus the labelling by ∼.

Finally, for the algorithm LearnD to produce the diagonal Dt`, the
input sample needs to be `-characteristic. Also, it has to be Dt-characteristic
for τ and the look-ahead ∼ it found. A sample S is then said to be char-
acteristic for a rational function τ if it fulfils all those conditions. This
gives the following result:

Theorem 5. For any Dfa D the learning algorithm LearnD identifies
rational functions with domain L(D) represented by their diagonal Dt`
from polynomial time and data.

That is: for any Dt` N in diagonal form defining a rational function τ
whose domain L(D), there exists a finite sample S ⊆ τ called character-
istic for τ whose size is polynomial in the size of N , such that from any
sample S′ ⊆ τ that contains S, LearnD(S′) computes a Dt` in diagonal-
minimal normal form defining τ in polynomial time in the size of S′.

Conclusion and Future Work. Our learning algorithm for Dt`s answers
the long standing open learning question for rational functions, for the
case where diagonal-minimal Dt` normal forms are used for their repre-
sentation. Whether other representations lead to negative results is left
open. More importantly, we would like to extend our result to determin-
istic top-down tree transducers with look-ahead, which have the same
expressiveness than functional top-down tree transducers [9].

References

1. J. Berstel. Transductions and Context-Free Languages. Teubner, 1979.
2. J. Berstel, L. Boasson, O. Carton, and I. Fagnot. Minimization of automata.

Computing Research Repository, abs/1010.5318, 2010.
3. J. Carme, R. Gilleron, A. Lemay, and J. Niehren. Interactive learning of node

selecting tree transducers. Machine Learning, 66(1):33–67, 2007.
4. C. Choffrut. A generalization of Ginsburg and Rose’s characterisation of g-s-m

mappings. In ICALP, volume 71 of LNCS, 88–103. 1979
5. C. Choffrut. Minimizing subsequential transducers: a survey. TCS, 292(1):131–143,

2003.
6. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Löding, S. Ti-

son, M. Tommasi. Tree automata techniques and applications. 2007.
7. C. de la Higuera. Characteristic sets for polynomial grammatical inference. Ma-

chine Learning, 27:125–137, 1997.
8. C. C. Elgot and G. Mezei. On relations defined by generalized finite automata.

IBM Journ. of Research and Development, 9:88–101, 1965.
9. J. Engelfriet. Top-down tree transducers with regular look-ahead. Math. Syst.

Theory, 10:198–231, 1977.
10. J. Engelfriet, S. Maneth, and H. Seidl. Deciding equivalence of top-down XML

transformations in polynomial time. JCSS, 75(5):271–286, 2009.
11. S. Friese, H. Seidl, and S. Maneth. Minimization of deterministic bottom-up tree

transducers. DLT, vol. 6224 of LNCS, 185–196. 2010.
12. E. M. Gold. Complexity of automaton identification from given data. Infor. and

Cont., 37:302–320, 1978.
13. J. Högberg, A. Maletti, and J. May. Backward and forward bisimulation mini-

mization of tree automata. TCS, 410(37):3539–3552, 2009.
14. J. Hopcroft. An n log n algorithm for minimizing states in a finite automaton.

TMC, 189–196, 1971.
15. A. Lemay, S. Maneth, and J. Niehren. A learning algorithm for Top-Down XML

transf. PODS, 285–296, 2010.
16. J. Oncina and P. Garcia. Inferring regular languages in polynomial update time.

Patt. Recog. and Image Anal., 49–61, 1992.
17. J. Oncina and P. García. Inference of recognizable tree sets. Tech. report, Univ.

de Alicante, 1993.
18. J. Oncina, P. Garcia, E. Vidal. Learning subsequential transducers for pattern

recognition and interpretation tasks. Patt Anal & Mach Intell, 15:448–458, 1993.
19. J. Oncina and M. A. Varo. Using domain information during the learning of a

subsequential transducer. ICGI, vol. 1147 in LNAI, 313–325, 1996.
20. C. Reutenauer and M. P. Schützenberger. Minimalization of rational word func-

tions. SIAM Journal on Computing, 20:669–685, 1991.

