35 research outputs found

    Human immunodeficiency virus and other sexually transmitted diseases in Cuban women

    Get PDF
    ABSTRACTA cross-sectional study was performed in 60 Cuban women of child-bearing age who were sero-positive for human immunodeficiency virus (HIV) and 60 controls. Human papillomavirus (HPV) was identified most frequently, with oncogenic HPV serotypes 16, 33 and 58 detected in HIV-positive patients, and serotypes 11, 33 and 51 in the controls (relative risk 4.41; 95% CI 2.21– 8.29). Syphilis and hepatitis B and C viruses were detected exclusively in HIV-sero-positive women (p < 0.05). Sexually transmitted diseases (STDs) appeared to pose a substantial health problem, especially for HIV-positive women. Clinics should consider screening and treatment for STDs as part of their HIV prevention programmes

    Six challenges in measuring contact networks for use in modelling.

    Get PDF
    Contact networks are playing an increasingly important role in epidemiology. A contact network represents individuals in a host population as nodes and the interactions among them that may lead to the transmission of infection as edges. New avenues for data collection in recent years have afforded us the opportunity to collect individual- and population-scale information to empirically describe the patterns of contact within host populations. Here, we present some of the current challenges in measuring empirical contact networks. We address fundamental questions such as defining contact; measurement of non-trivial contact properties; practical issues of bounding measurement of contact networks in space, time and scope; exploiting proxy information about contacts; dealing with missing data. Finally, we consider the privacy and ethical issues surrounding the collection of contact network data

    Epidemiological study of phylogenetic transmission clusters in a local HIV-1 epidemic reveals distinct differences between subtype B and non-B infections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The number of HIV-1 infected individuals in the Western world continues to rise. More in-depth understanding of regional HIV-1 epidemics is necessary for the optimal design and adequate use of future prevention strategies. The use of a combination of phylogenetic analysis of HIV sequences, with data on patients' demographics, infection route, clinical information and laboratory results, will allow a better characterization of individuals responsible for local transmission.</p> <p>Methods</p> <p>Baseline HIV-1 <it>pol </it>sequences, obtained through routine drug-resistance testing, from 506 patients, newly diagnosed between 2001 and 2009, were used to construct phylogenetic trees and identify transmission-clusters. Patients' demographics, laboratory and clinical data, were retrieved anonymously. Statistical analysis was performed to identify subtype-specific and transmission-cluster-specific characteristics.</p> <p>Results</p> <p>Multivariate analysis showed significant differences between the 59.7% of individuals with subtype B infection and the 40.3% non-B infected individuals, with regard to route of transmission, origin, infection with <it>Chlamydia </it>(p = 0.01) and infection with Hepatitis C virus (p = 0.017). More and larger transmission-clusters were identified among the subtype B infections (p < 0.001). Overall, in multivariate analysis, clustering was significantly associated with Caucasian origin, infection through homosexual contact and younger age (all p < 0.001). Bivariate analysis additionally showed a correlation between clustering and syphilis (p < 0.001), higher CD4 counts (p = 0.002), <it>Chlamydia </it>infection (p = 0.013) and primary HIV (p = 0.017).</p> <p>Conclusions</p> <p>Combination of phylogenetics with demographic information, laboratory and clinical data, revealed that HIV-1 subtype B infected Caucasian men-who-have-sex-with-men with high prevalence of sexually transmitted diseases, account for the majority of local HIV-transmissions. This finding elucidates observed epidemiological trends through molecular analysis, and justifies sustained focus in prevention on this high risk group.</p

    Systematic Review of Mucosal Immunity Induced by Oral and Inactivated Poliovirus Vaccines against Virus Shedding following Oral Poliovirus Challenge

    Get PDF
    Inactivated poliovirus vaccine (IPV) may be used in mass vaccination campaigns during the final stages of polio eradication. It is also likely to be adopted by many countries following the coordinated global cessation of vaccination with oral poliovirus vaccine (OPV) after eradication. The success of IPV in the control of poliomyelitis outbreaks will depend on the degree of nasopharyngeal and intestinal mucosal immunity induced against poliovirus infection. We performed a systematic review of studies published through May 2011 that recorded the prevalence of poliovirus shedding in stool samples or nasopharyngeal secretions collected 5–30 days after a “challenge” dose of OPV. Studies were combined in a meta-analysis of the odds of shedding among children vaccinated according to IPV, OPV, and combination schedules. We identified 31 studies of shedding in stool and four in nasopharyngeal samples that met the inclusion criteria. Individuals vaccinated with OPV were protected against infection and shedding of poliovirus in stool samples collected after challenge compared with unvaccinated individuals (summary odds ratio [OR] for shedding 0.13 (95% confidence interval [CI] 0.08–0.24)). In contrast, IPV provided no protection against shedding compared with unvaccinated individuals (summary OR 0.81 [95% CI 0.59–1.11]) or when given in addition to OPV, compared with individuals given OPV alone (summary OR 1.14 [95% CI 0.82–1.58]). There were insufficient studies of nasopharyngeal shedding to draw a conclusion. IPV does not induce sufficient intestinal mucosal immunity to reduce the prevalence of fecal poliovirus shedding after challenge, although there was some evidence that it can reduce the quantity of virus shed. The impact of IPV on poliovirus transmission in countries where fecal-oral spread is common is unknown but is likely to be limited compared with OPV

    Molecular Epidemiology of HIV-1 Transmission in a Cohort of HIV-1 Concordant Heterosexual Couples from Dakar, Senegal

    Get PDF
    BACKGROUND: A large number of HIV-1 infections in Africa occur in married couples. The predominant direction of intracouple transmission and the principal external origins of infection remain important issues of debate. METHODS: We investigated HIV-1 transmission in 46 HIV-1 concordant positive couples from Dakar, Senegal. Intracouple transmission was confirmed by maximum-likelihood phylogenetic analysis and pairwise distance comparisons of HIV-1 env gp41 sequences from both partners. Standardized interview data were used to deduce the direction as well as the external sources of the intracouple transmissions. RESULTS: Conservative molecular analyses showed linked viruses in 34 (74%) couples, unlinked viruses in 6 (13%) couples, and indeterminate results for 6 (13%) couples. The interview data corresponded completely with the molecular analyses: all linked couples reported internal transmission and all unlinked couples reported external sources of infection. The majority of linked couples (93%) reported the husband as internal source of infection. These husbands most frequently (82%) reported an occasional sexual relationship as external source of infection. Pairwise comparisons of the CD4 count, antiretroviral therapy status, and the proportion of gp41 ambiguous base pairs within transmission pairs correlated with the reported order of infection events. CONCLUSIONS: In this suburban Senegalese population, a majority of HIV-1 concordant couples showed linked HIV-1 transmission with the husband as likely index partner. Our data emphasize the risk of married women for acquiring HIV-1 as a result of the occasional sexual relationships of their husbands

    Tracking virus outbreaks in the twenty-first century

    Get PDF
    Emerging viruses have the potential to impose substantial mortality, morbidity and economic burdens on human populations. Tracking the spread of infectious diseases to assist in their control has traditionally relied on the analysis of case data gathered as the outbreak proceeds. Here, we describe how many of the key questions in infectious disease epidemiology, from the initial detection and characterization of outbreak viruses, to transmission chain tracking and outbreak mapping, can now be much more accurately addressed using recent advances in virus sequencing and phylogenetics. We highlight the utility of this approach with the hypothetical outbreak of an unknown pathogen, 'Disease X', suggested by the World Health Organization to be a potential cause of a future major epidemic. We also outline the requirements and challenges, including the need for flexible platforms that generate sequence data in real-time, and for these data to be shared as widely and openly as possible

    Polio: The eradication endgame

    No full text
    corecore