250 research outputs found

    Is voluntary certification of tropical agricultural commodities achieving sustainability goals for small-scale producers? A review of the evidence

    Get PDF
    Over the last several decades, voluntary certification programs have become a key approach to promote sustainable supply chains for agricultural commodities. These programs provide premiums and other benefits to producers for adhering to environmental and labor practices established by the certifying entities. Following the principles of Cochrane Reviews used in health sciences, we assess evidence to evaluate whether voluntary certification of tropical agricultural commodities (bananas, cocoa, coffee, oil palm, and tea) has achieved environmental benefits and improved economic and social outcomes for small-scale producers at the level of the farm household. We reviewed over 2600 papers in the peer-review literature and identified 24 cases of unique combinations of study area, certification program, and commodity in 16 papers that rigorously analyzed differences between treatment (certified households) and control groups (uncertified households) for a wide range of response variables. Based on analysis of 347 response variables reported in these papers, we conclude that certification is associated on average with positive outcomes for 34% of response variables, no significant difference for 58% of variables, and negative outcomes for 8% of variables. No significant differences were observed for different categories of responses (environmental, economic and social) or for different commodities (banana, coffee and tea), except negative outcomes were significantly less for environmental than other outcome categories (p = 0.01). Most cases (20 out of 24) investigated coffee certification and response variables were inconsistent across cases, indicating the paucity of studies to conduct a conclusive meta-analysis. The somewhat positive results indicate that voluntary certification programs can sometimes play a role in meeting sustainable development goals and do not support the view that such programs are merely greenwashing. However, results also indicate that certification is not a panacea to improve social outcomes or overall incomes of smallholder farmers. Rigorous analysis, standardized criteria, and independent evaluation are needed to assess effectiveness of certification programs in the future

    Towards an agrobiodiversity index for sustainable food systems

    Get PDF

    Agricultural biodiversity and food system sustainability

    Get PDF

    Farming and the geography of nutrient production for human use: a transdisciplinary analysis

    Get PDF
    Background: Information about the global structure of agriculture and nutrient production and its diversity is essential to improve present understanding of national food production patterns, agricultural livelihoods, and food chains, and their linkages to land use and their associated ecosystems services. Here we provide a plausible breakdown of global agricultural and nutrient production by farm size, and also study the associations between farm size, agricultural diversity, and nutrient production. This analysis is crucial to design interventions that might be appropriately targeted to promote healthy diets and ecosystems in the face of population growth, urbanisation, and climate change. Methods: We used existing spatially-explicit global datasets to estimate the production levels of 41 major crops, seven livestock, and 14 aquaculture and fish products. From overall production estimates, we estimated the production of vitamin A, vitamin B₁₂, folate, iron, zinc, calcium, calories, and protein. We also estimated the relative contribution of farms of different sizes to the production of different agricultural commodities and associated nutrients, as well as how the diversity of food production based on the number of different products grown per geographic pixel and distribution of products within this pixel (Shannon diversity index [H]) changes with different farm sizes. Findings: Globally, small and medium farms (≀50 ha) produce 51–77% of nearly all commodities and nutrients examined here. However, important regional differences exist. Large farms (>50 ha) dominate production in North America, South America, and Australia and New Zealand. In these regions, large farms contribute between 75% and 100% of all cereal, livestock, and fruit production, and the pattern is similar for other commodity groups. By contrast, small farms (≀20 ha) produce more than 75% of most food commodities in sub-Saharan Africa, southeast Asia, south Asia, and China. In Europe, west Asia and north Africa, and central America, medium-size farms (20–50 ha) also contribute substantially to the production of most food commodities. Very small farms (≀2 ha) are important and have local significance in sub-Saharan Africa, southeast Asia, and south Asia, where they contribute to about 30% of most food commodities. The majority of vegetables (81%), roots and tubers (72%), pulses (67%), fruits (66%), fish and livestock products (60%), and cereals (56%) are produced in diverse landscapes (H>1·5). Similarly, the majority of global micronutrients (53–81%) and protein (57%) are also produced in more diverse agricultural landscapes (H>1·5). By contrast, the majority of sugar (73%) and oil crops (57%) are produced in less diverse ones (H≀1·5), which also account for the majority of global calorie production (56%). The diversity of agricultural and nutrient production diminishes as farm size increases. However, areas of the world with higher agricultural diversity produce more nutrients, irrespective of farm size. Interpretation: Our results show that farm size and diversity of agricultural production vary substantially across regions and are key structural determinants of food and nutrient production that need to be considered in plans to meet social, economic, and environmental targets. At the global level, both small and large farms have key roles in food and nutrition security. Efforts to maintain production diversity as farm sizes increase seem to be necessary to maintain the production of diverse nutrients and viable, multifunctional, sustainable landscapes. Funding: Commonwealth Scientific and Industrial Research Organisation, Bill & Melinda Gates Foundation, CGIAR Research Programs on Climate Change, Agriculture and Food Security and on Agriculture for Nutrition and Health funded by the CGIAR Fund Council, Daniel and Nina Carasso Foundation, European Union, International Fund for Agricultural Development, Australian Research Council, National Science Foundation, Gordon and Betty Moore Foundation, and Joint Programming Initiative on Agriculture, Food Security and Climate Change—Belmont Forum

    Antioxidant intervention in rheumatoid arthritis: results of an open pilot study

    Get PDF
    There is evidence that reactive oxygen species play a causal role in auto-immune diseases, such as rheumatoid arthritis (RA). Despite the supporting evidence for a beneficial effect of antioxidants on clinical characteristics of RA, the right balance for optimal effectiveness of antioxidants is largely unknown. To determine the potential beneficial effects of an antioxidant intervention on clinical parameters for RA, an open pilot study was designed. Eight non-smoking female patients with rheumatoid factor + RA and a Disease Activity Score (DAS 28) higher than 2.5 were enrolled in the study. Patients had to be receiving stable non-steroidal anti-inflammatory drug treatment and/or ‘second line’ medication for at least 3 months. The pilot group consumed 20 g of antioxidant-enriched spread daily during a period of 10 weeks. The intervention was stopped after 10 weeks and was followed by a ‘wash-out’ period of 4 weeks. At t = 0, t = 10 weeks and t = 14 weeks, patients’ condition was assessed by means of DAS. In addition, standard laboratory analyses were performed, and blood-samples for antioxidants were taken. The antioxidant-enriched spread was well tolerated. All laboratory measures of inflammatory activity and oxidative modification were generally unchanged. However, the number of swollen and painful joints were significantly decreased and general health significantly increased, as reflected by a significantly improved (1.6) DAS at t = 10 weeks. The antioxidant effect was considered beneficial as, compared to the scores at t = 0, the DAS significantly reduced at t = 10 weeks. Increase of the DAS (0.7) after the “wash-out period” at t = 14 confirmed a causal relation between changes in clinical condition and antioxidants. This open pilot study aimed to assess the clinical relevance of an antioxidant intervention as a first step in assessing potential beneficial effects of antioxidants on rheumatoid arthritis. These conclusions need to be validated in a larger controlled study population

    Device-independent, real-time identification of bacterial pathogens with a metal oxide-based olfactory sensor

    Get PDF
    A novel olfactory method for bacterial species identification using an electronic nose device called the MonoNose was developed. Differential speciation of micro-organisms present in primary cultures of clinical samples could be performed by real-time identification of volatile organic compounds (VOCs) produced during microbial replication. Kinetic measurements show that the dynamic changes in headspace gas composition are orders of magnitude larger than the static differences at the end of fermentation. Eleven different, clinically relevant bacterial species were included in this study. For each of the species, two to eight different strains were used to take intra-species biodiversity into account. A total of 52 different strains were measured in an incubator at 37°C. The results show that the diagnostic specificities varied from 100% for Clostridium difficile to 67% for Enterobacter cloacae with an overall average of 87%. Pathogen identification with a MonoNose can be achieved within 6–8 h of inoculation of the culture broths. The diagnostic specificity can be improved by broth modification to improve the VOC production of the pathogens involved

    Measuring agricultural biodiversity for sustainable food systems

    Get PDF
    Today, global food production is the largest driver of environmental degradation and biodiversity loss (Willett et al. 2019). Rising global food demand and limited arable land are pushing us to expand agricultural frontiers and production. This often happens without regard to the environment, causing biodiversity loss, land and water degradation (Bioversity International 2017) Climate change is accelerating biodiversity loss. Higher temperatures disrupt pollination and natural pest control, affecting food quality (Food and Agriculture Organization of the UN 2017).Equally, the need to feed an additional 2 billion people by 2050 is pushing us to increase yields in a few staple foods, which erodes food and genetic diversity. Biodiversity loss in food systems leaves farmers with fewer options to deal with risks of crop failure, declining soil fertility, or increasingly variable weather (Bioversity International 2017), causing production losses, food insecurity and malnutrition(FAO, IFAD, UNICEF, WFP WHO 2018).The way we produce and consume our food is hurting both people and the planet. This calls upon all of us, from governments to producers to consumers, to put biodiversity back into food (World Economic Forum (WEF) 2017).Food and - more broadly - agricultural biodiversity are essential for sustainable food systems. Agrobiodiversity boosts productivity and nutrition quality, increases soil and water quality, and reduces the need for synthetic fertilizers. It makes farmers’ livelihoods more resilient, reducing yield losses due to climate change and pest damage. Broadening the types of cultivated plants also benefits the environment, increasing the abundance of pollinators and beneficial soil organisms, and reducing the risk of pest epidemics.To sustainably use and conserve agrobiodiversity, governments need dedicated, multi-sectoral and evidence-based policies and strategies. From smallholder farmers to multinational companies, food producers are becoming increasingly important in conserving genetic resources and adopting sustainable agricultural practices. Consumers need to become more aware of the impact of their food choices on the planet and their role in preserving the environment.What actions do we need to put in place to make change happen? To answer, we need to be able to measure biodiversity in food systems. While decades of effort have advanced our understanding of sustainable food systems, biodiversity data remain uneven and oftentimes information is analyzed from sectoral perspectives (i.e.: production, consumption or conservation). To transform food systems, we need to look at the broader picture and understand the systemic linkages between biodiversity, food security and nutrition, agricultural production, and the environment.Bioversity International has developed the Agrobiodiversity Index, an innovative tool that brings together existing data on diets and markets, production and genetic resources, analyzing them under the lens of agricultural biodiversity (Bioversity International 2018). Through open access to agricultural biodiversity data for science and society, the tool crosses disciplinary boundaries and allows users to monitor biodiversity trends in food systems. In particular, it helps food systems actors to measure agrobiodiversity in a selected area or value chain, and understand to what extent their commitments and actions are contributing to its sustainable use and conservation.This user-friendly tool equips food systems actors with the data needed to make informed decisions. For example, it helps governments to formulate evidence-based agricultural, health and food policies and strategies to address today’s global challenges, by providing information on how biological and geographical diversity influence food systems sustainability. Through the Index, companies can understand how to diversify their supply chain and production to reduce risks, and what are the best agricultural practices for their agro-ecological zone. The tool can thereby support best practices dissemination, and track progress towards global goals related to agrobiodiversity, including Sustainable Development Goals 3, 12, 13, 15 and Aichi targets 7

    Primary tumor–derived systemic nANGPTL4 inhibits metastasis

    Get PDF
    Primary tumors and distant site metastases form a bidirectionally communicating system. Yet, the molecular mechanisms of this crosstalk are poorly understood. Here, we identified the proteolytically cleaved fragments of angiopoietin-like 4 (ANGPTL4) as contextually active protumorigenic and antitumorigenic contributors in this communication ecosystem. Preclinical studies in multiple tumor models revealed that the C-terminal fragment (cANGPTL4) promoted tumor growth and metastasis. In contrast, the N-terminal fragment of ANGPTL4 (nANGPTL4) inhibited metastasis and enhanced overall survival in a postsurgical metastasis model by inhibiting WNT signaling and reducing vascularity at the metastatic site. Tracing ANGPTL4 and its fragments in tumor patients detected full-length ANGPTL4 primarily in tumor tissues, whereas nANGPTL4 predominated in systemic circulation and correlated inversely with disease progression. The study highlights the spatial context of the proteolytic cleavage-dependent pro- and antitumorigenic functions of ANGPTL4 and identifies and validates nANGPTL4 as a novel biomarker of tumor progression and antimetastatic therapeutic agent

    A model-based exploration of farm-household livelihood and nutrition indicators to guide nutrition-sensitive agriculture interventions

    Get PDF
    Assessing progress towards healthier people, farms and landscapes through nutrition-sensitive agriculture (NSA) requires transdisciplinary methods with robust models and metrics. Farm-household models could facilitate disentangling the complex agriculture-nutrition nexus, by jointly assessing performance indicators on different farm system components such as farm productivity, farm environmental performance, household nutrition, and livelihoods. We, therefore, applied a farm-household model, FarmDESIGN, expanded to more comprehensively capture household nutrition and production diversity, diet diversity, and nutrient adequacy metrics. We estimated the potential contribution of an NSA intervention targeting the diversification of home gardens, aimed at reducing nutritional gaps and improving livelihoods in rural Vietnam. We addressed three central questions: (1) Do ‘Selected Crops’ (i.e. crops identified in a participatory process) in the intervention contribute to satisfying household dietary requirements?; (2) Does the adoption of Selected Crops contribute to improving household livelihoods (i.e. does it increase leisure time for non-earning activities as well as the dispensable budget)?; and (3) Do the proposed nutrition-related metrics estimate the contribution of home-garden diversification towards satisfying household dietary requirements? Results indicate trade-offs between nutrition and dispensable budget, with limited farm-household configurations leading to jointly improved nutrition and livelihoods. FarmDESIGN facilitated testing the robustness and limitations of commonly used metrics to monitor progress towards NSA. Results indicate that most of the production diversity metrics performed poorly at predicting desirable nutritional outcomes in this modelling study. This study demonstrates that farm-household models can facilitate anticipating the effect (positive or negative) of agricultural interventions on nutrition and the environment, identifying complementary interventions for significant and positive results and helping to foresee the trade-offs that farm-households could face. Furthermore, FarmDESIGN could contribute to identifying agreed-upon and robust metrics for measuring nutritional outcomes at the farm-household level, to allow comparability between contexts and NSA interventions
    • 

    corecore