1,243 research outputs found
Transport coefficients from the Boson Uehling-Uhlenbeck Equation
We derive microscopic expressions for the bulk viscosity, shear viscosity and
thermal conductivity of a quantum degenerate Bose gas above , the critical
temperature for Bose-Einstein condensation. The gas interacts via a contact
potential and is described by the Uehling-Uhlenbeck equation. To derive the
transport coefficients, we use Rayleigh-Schrodinger perturbation theory rather
than the Chapman-Enskog approach. This approach illuminates the link between
transport coefficients and eigenvalues of the collision operator. We find that
a method of summing the second order contributions using the fact that the
relaxation rates have a known limit improves the accuracy of the computations.
We numerically compute the shear viscosity and thermal conductivity for any
boson gas that interacts via a contact potential. We find that the bulk
viscosity remains identically zero as it is for the classical case.Comment: 10 pages, 2 figures, submitted to Phys. Rev.
Quantum Phase Transitions and Bipartite Entanglement
We develop a general theory of the relation between quantum phase transitions
(QPTs) characterized by nonanalyticities in the energy and bipartite
entanglement. We derive a functional relation between the matrix elements of
two-particle reduced density matrices and the eigenvalues of general two-body
Hamiltonians of -level systems. The ground state energy eigenvalue and its
derivatives, whose non-analyticity characterizes a QPT, are directly tied to
bipartite entanglement measures. We show that first-order QPTs are signalled by
density matrix elements themselves and second-order QPTs by the first
derivative of density matrix elements. Our general conclusions are illustrated
via several quantum spin models.Comment: 5 pages, incl. 2 figures. v3: The version published in PRL, including
a few extra comments and clarifications for which there was no space in the
PR
A system for production of defective interfering particles in the absence of infectious influenza A virus
<div><p>Influenza A virus (IAV) infection poses a serious health threat and novel antiviral strategies are needed. Defective interfering particles (DIPs) can be generated in IAV infected cells due to errors of the viral polymerase and may suppress spread of wild type (wt) virus. The antiviral activity of DIPs is exerted by a DI genomic RNA segment that usually contains a large deletion and suppresses amplification of wt segments, potentially by competing for cellular and viral resources. DI-244 is a naturally occurring prototypic segment 1-derived DI RNA in which most of the PB2 open reading frame has been deleted and which is currently developed for antiviral therapy. At present, coinfection with wt virus is required for production of DI-244 particles which raises concerns regarding biosafety and may complicate interpretation of research results. Here, we show that cocultures of 293T and MDCK cell lines stably expressing codon optimized PB2 allow production of DI-244 particles solely from plasmids and in the absence of helper virus. Moreover, we demonstrate that infectivity of these particles can be quantified using MDCK-PB2 cells. Finally, we report that the DI-244 particles produced in this novel system exert potent antiviral activity against H1N1 and H3N2 IAV but not against the unrelated vesicular stomatitis virus. This is the first report of DIP production in the absence of infectious IAV and may spur efforts to develop DIPs for antiviral therapy.</p></div
Imaging the lateral shift of a quantum-point contact using scanning-gate microscopy
We perform scanning-gate microscopy on a quantum-point contact. It is defined
in a high-mobility two-dimensional electron gas of an AlGaAs/GaAs
heterostructure, giving rise to a weak disorder potential. The lever arm of the
scanning tip is significantly smaller than that of the split gates defining the
conducting channel of the quantum-point contact. We are able to observe that
the conducting channel is shifted in real space when asymmetric gate voltages
are applied. The observed shifts are consistent with transport data and
numerical estimations.Comment: 5 pages, 3 figure
Entanglement and dynamics of spin-chains in periodically-pulsed magnetic fields: accelerator modes
We study the dynamics of a single excitation in a Heisenberg spin-chain
subjected to a sequence of periodic pulses from an external, parabolic,
magnetic field. We show that, for experimentally reasonable parameters, a pair
of counter-propagating coherent states are ejected from the centre of the
chain. We find an illuminating correspondence with the quantum time evolution
of the well-known paradigm of quantum chaos, the Quantum Kicked Rotor (QKR).
From this we can analyse the entanglement production and interpret the
ejected coherent states as a manifestation of so-called `accelerator modes' of
a classically chaotic system.Comment: 5 pages, 2 figures; minor corrections, tidied presentatio
Microscopic Derivation of Causal Diffusion Equation using Projection Operator Method
We derive a coarse-grained equation of motion of a number density by applying
the projection operator method to a non-relativistic model. The derived
equation is an integrodifferential equation and contains the memory effect. The
equation is consistent with causality and the sum rule associated with the
number conservation in the low momentum limit, in contrast to usual acausal
diffusion equations given by using the Fick's law. After employing the Markov
approximation, we find that the equation has the similar form to the causal
diffusion equation. Our result suggests that current-current correlations are
not necessarily adequate as the definition of diffusion constants.Comment: 10 pages, 1 figure, Final version published in Phys. Rev.
- …