245 research outputs found
Aerosol-Radiation-Cloud Interactions in the South-East Atlantic: First Results from the ORACLES-2016 Deployment and Plans for Future Activities
Southern Africa produces almost a third of the Earths biomass burning (BB) aerosol particles. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical stratocumulus (Sc) cloud decks in the world. The SE Atlantic stratocumulus deck interacts with the dense layers of BB aerosols that initially overlay the cloud deck, but later subside and may mix into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects, and their global representation in climate models remains one of the largest uncertainties in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for regional and global climate change predictions.Our understanding of aerosol-cloud interactions in the SE Atlantic is severely limited. Most notably, we are missing knowledge on the absorptive and cloud nucleating properties of aerosols, including their vertical distribution relative to clouds, on the locations and degree of aerosol mixing into clouds, on the processes that govern cloud property adjustments, and on the importance of aerosol effects on clouds relative to co-varying synoptic scale meteorology.We describe first results from various synergistic, international research activities aimed at studying aerosol-cloud interactions in the region:NASAs airborne ORACLES (ObseRvations of Aerosols Above Clouds and Their IntEractionS) deployment in AugustSeptember of 2016,the DoEs LASIC (Layered Atlantic Smoke Interactions with Clouds) deployment of the ARM Mobile Facility to Ascension Island (June 2016 October 2017), the ground-based components of CNRS AEROCLO-sA (Aerosols Clouds and Fog over the west coast of southern Africa), and ongoing regional-scale integrative, process-oriented science efforts as part of SEALS-sA (Sea Earth Atmosphere Linkages Study in southern Africa).We expect to describe experimental setups as well as showcase initial aerosol and cloud property distributions. Furthermore, we discuss the implementation of future activities in these programs in coordination with the UK Met Offices CLARIFY (CLoud-Aerosol-Radiation Interactions and Forcing) experiment in 2017
Membrane invaginations reveal cortical sites that pull on mitotic spindles in one-cell C. elegans embryos.
Asymmetric positioning of the mitotic spindle in C. elegans embryos is mediated by force-generating complexes that are anchored at the plasma membrane and that pull on microtubules growing out from the spindle poles. Although asymmetric distribution of the force generators is thought to underlie asymmetric positioning of the spindle, the number and location of the force generators has not been well defined. In particular, it has not been possible to visualize individual force generating events at the cortex. We discovered that perturbation of the acto-myosin cortex leads to the formation of long membrane invaginations that are pulled from the plasma membrane toward the spindle poles. Several lines of evidence show that the invaginations, which also occur in unperturbed embryos though at lower frequency, are pulled by the same force generators responsible for spindle positioning. Thus, the invaginations serve as a tool to localize the sites of force generation at the cortex and allow us to estimate a lower limit on the number of cortical force generators within the cell
Answering the Call for Model-Relevant Observations of Aerosols and Clouds
We describe a technique for combining multiple A-Train aerosol data sets, namely MODIS spectral AOD (aerosol optical depth), OMI AAOD (absorption aerosol optical depth) and CALIOP aerosol backscatter retrievals (hereafter referred to as MOC retrievals) to estimate full spectral sets of aerosol radiative properties, and ultimately to calculate the 3-D distribution of direct aerosol radiative effects (DARE). We present MOC results using almost two years of data collected in 2007 and 2008, and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. We compare the spatio-temporal distribution of the MOC retrievals and MOC-based calculations of seasonal clear-sky DARE to values derived from four models that participated in the Phase II AeroCom model intercomparison initiative. Comparisons of seasonal aerosol property to AeroCom Phase II results show generally good agreement best agreement with forcing results at TOA is found with GMI-MerraV3.We discuss the challenges in making observations that really address deficiencies in models, with some of the more relevant aspects being representativeness of the observations for climatological states, and whether a given model-measurement difference addresses a sampling or a model error
Upgrade of the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) to its Full Science Capability of Sun-Sky-Cloud-Trace Gas Spectrometry in Airborne Science Deployments
The objectives of this task in the AITT (Airborne Instrument Technology Transition) Program are to (1) upgrade the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument to its full science capability of measuring (a) direct-beam sun transmission to derive aerosol optical depth spectra, (b) sky radiance vs scattering angle to retrieve aerosol absorption and type (via complex refractive index spectra, shape, and mode-resolved size distribution), (c) zenith radiance for cloud properties, and (d) hyperspectral signals for trace gas retrievals, and (2) demonstrate its suitability for deployment in challenging NASA airborne multiinstrument campaigns. 4STAR combines airborne sun tracking, sky scanning, and zenith pointing with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air pollution, radiant energy budgets (hence climate), and remote measurements of Earth's surfaces. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements are intended to tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. 4STAR test flights, as well as science flights in the 2012-13 TCAP (Two-Column Aerosol Project) and 2013 SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) have demonstrated that the following are essential for 4STAR to achieve its full science potential: (1) Calibration stability for both direct-beam irradiance and sky radiance, (2) Improved light collection and usage, and (3) Improved flight operability and reliability. A particular challenge for the AITT-4STAR project has been conducting it simultaneously with preparations for, and execution of, ARISE (Arctic Radiation - IceBridge Sea&Ice Experiment), a NASA airborne science deployment (unplanned when AITT-4STAR was selected for funding) in which 4STAR will deploy to Thule, Greenland, and Fairbanks, Alaska, on the NASA C- 130. This presentation describes progress to date in accomplishing AITT-4STAR goals, and plans for project completion
Combined Retrievals of Boreal Forest Fire Aerosol Properties with a Polarimeter and Lidar
Absorbing aerosols play an important, but uncertain, role in the global climate. Much of this uncertainty is due to a lack of adequate aerosol measurements. While great strides have been made in observational capability in the previous years and decades, it has become increasingly apparent that this development must continue. Scanning polarimeters have been designed to help resolve this issue by making accurate, multi-spectral, multi-angle polarized observations. This work involves the use of the Research Scanning Polarimeter (RSP). The RSP was designed as the airborne prototype for the Aerosol Polarimetery Sensor (APS), which was due to be launched as part of the (ultimately failed) NASA Glory mission. Field observations with the RSP, however, have established that simultaneous retrievals of aerosol absorption and vertical distribution over bright land surfaces are quite uncertain. We test a merger of RSP and High Spectral Resolution Lidar (HSRL) data with observations of boreal forest fire smoke, collected during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS). During ARCTAS, the RSP and HSRL instruments were mounted on the same aircraft, and validation data were provided by instruments on an aircraft flying a coordinated flight pattern. We found that the lidar data did indeed improve aerosol retrievals using an optimal estimation method, although not primarily because of the constraints imposed on the aerosol vertical distribution. The more useful piece of information from the HSRL was the total column aerosol optical depth, which was used to select the initial value (optimization starting point) of the aerosol number concentration. When ground based sun photometer network climatologies of number concentration were used as an initial value, we found that roughly half of the retrievals had unrealistic sizes and imaginary indices, even though the retrieved spectral optical depths agreed within uncertainties to independent observations. The convergence to an unrealistic local minimum by the optimal estimator is related to the relatively low sensitivity to particles smaller than 0.1 ( m) at large optical thicknesses. Thus, optimization algorithms used for operational aerosol retrievals of the fine mode size distribution, when the total optical depth is large, will require initial values generated from table look-ups that exclude unrealistic size/complex index mixtures. External constraints from lidar on initial values used in the optimal estimation methods will also be valuable in reducing the likelihood of obtaining spurious retrievals
Use of A-Train Aerosol Observations to Constrain Direct Aerosol Radiative Effects (DARE) Comparisons with Aerocom Models and Uncertainty Assessments
We describe a technique for combining multiple A-Train aerosol data sets, namely MODIS spectral AOD (aerosol optical depth), OMI AAOD (absorption aerosol optical depth) and CALIOP aerosol backscatter retrievals (hereafter referred to as MOC retrievals) to estimate full spectral sets of aerosol radiative properties, and ultimately to calculate the 3-D distribution of direct aerosol radiative effects (DARE). We present MOC results using almost two years of data collected in 2007 and 2008, and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the MODIS Collection 6 AOD data derived with the dark target and deep blue algorithms has extended the coverage of the MOC retrievals towards higher latitudes. The MOC aerosol retrievals agree better with AERONET in terms of the single scattering albedo (ssa) at 441 nm than ssa calculated from OMI and MODIS data alone, indicating that CALIOP aerosol backscatter data contains information on aerosol absorption. We compare the spatio-temporal distribution of the MOC retrievals and MOC-based calculations of seasonal clear-sky DARE to values derived from four models that participated in the Phase II AeroCom model intercomparison initiative. Overall, the MOC-based calculations of clear-sky DARE at TOA over land are smaller (less negative) than previous model or observational estimates due to the inclusion of more absorbing aerosol retrievals over brighter surfaces, not previously available for observationally-based estimates of DARE. MOC-based DARE estimates at the surface over land and total (land and ocean) DARE estimates at TOA are in between previous model and observational results. Comparisons of seasonal aerosol property to AeroCom Phase II results show generally good agreement best agreement with forcing results at TOA is found with GMI-MerraV3. We discuss sampling issues that affect the comparisons and the major challenges in extending our clear-sky DARE results to all-sky conditions. We present estimates of clear-sky and all-sky DARE and show uncertainties that stem from the assumptions in the spatial extrapolation and accuracy of aerosol and cloud properties, in the diurnal evolution of these properties, and in the radiative transfer calculations
Classification of Aerosol Retrievals from Spaceborne Polarimetry Using a Multiparameter Algorithm
In this presentation, we demonstrate application of a new aerosol classification algorithm to retrievals from the POLDER-3 polarimter on the PARASOL spacecraft. Motivation and method: Since the development of global aerosol measurements by satellites and AERONET, classification of observed aerosols into several types (e.g., urban-industrial, biomass burning, mineral dust, maritime, and various subtypes or mixtures of these) has proven useful to: understanding aerosol sources, transformations, effects, and feedback mechanisms; improving accuracy of satellite retrievals and quantifying assessments of aerosol radiative impacts on climate
Airborne Sunphotometer and Solar Spectral Flux Radiometer Measurements During INTEX/ITCT 2004
During the period 12 July - 8 August 2004, the NASA Ames 14-channel Airborne Tracking Sunphotometer (MTS-14) and Solar Spectral Flux Radiometer (SSFR) were operated aboard a Jetstream 31 (J31) aircraft and acquired measurements during nineteen science flights (approx. 53 flight hours) over the Gulf of Maine in support of the INTEX-NA (INtercontinental chemical Transport Experiment-North America) and ITCT (Intercontinental Transport and Chemical Transformation of anthropogenic pollution) field studies. In this paper, we will present results from analyses of those data sets. AATS-14 measures the direct solar beam transmission at fourteen discrete wavelengths (354-2138 nm), and provides instantaneous measurements of aerosol optical depth (AOD) spectra and water vapor column content, in addition to vertical profiles of aerosol extinction and water vapor density during suitable aircraft ascents and descents. SSFR consists of separate nadir and zenith viewing hemispheric FOV sensors that yield measurements of up- and downwelling solar irradiance at a spectral resolution of approx. 8-12 nm over the wavelength range 300-1700 nm. The objectives of the J31-based measurements during INTEX/ITCT were to provide AOD data for the evaluation of MODIS (MODerate-resolution Imaging Spectroradiometer) and MISR (Multi-angle Imaging Spectro-Radiometer) AOD retrievals, quantify sea surface spectral albedo (which can contribute the largest uncertainty to satellite aerosol retrievals for low aerosol loading), test closure (consistency) among suborbital results, test chemical-transport models using AOD profiles, and assess regional radiative forcing by combining satellite and suborbital results. Specific J31 flight patterns were designed to achieve these objectives, and they included a mixture of vertical profiles (spiral and ramped ascents and descents) and constant altitude horizontal transects at a variety of altitudes. Additional information is included in the original extended abstract
Planning, implementation and scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission
The Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission based at Ellington Field, Texas, during August and September 2013 employed the most comprehensive airborne payload to date to investigate atmospheric composition over North America. The NASA ER-2, DC-8, and SPEC Inc. Learjet flew 57 science flights from the surface to 20 km. The ER-2 employed seven remote sensing instruments as a satellite surrogate and eight in situ instruments. The DC-8 employed 23 in situ and five remote sensing instruments for radiation, chemistry, and microphysics. The Learjet used 11 instruments to explore cloud microphysics. SEAC4RS launched numerous balloons, augmented AErosol RObotic NETwork, and collaborated with many existing ground measurement sites. Flights investigating convection included close coordination of all three aircraft. Coordinated DC-8 and ER-2 flights investigated the optical properties of aerosols, the influence of aerosols on clouds, and the performance of new instruments for satellite measurements of clouds and aerosols. ER-2 sorties sampled stratospheric injections of water vapor and other chemicals by local and distant convection. DC-8 flights studied seasonally evolving chemistry in the Southeastern U.S., atmospheric chemistry with lower emissions of NOx and SO2 than in previous decades, isoprene chemistry under high and low NOx conditions at different locations, organic aerosols, air pollution near Houston and in petroleum fields, smoke from wildfires in western forests and from agricultural fires in the Mississippi Valley, and the ways in which the chemistry in the boundary layer and the upper troposphere were influenced by vertical transport in convective clouds
Comparison of aerosol optical depths from the Ozone Monitoring Instrument (OMI) on Aura with results from airborne sunphotometry, other space and ground measurements during MILAGRO/INTEX-B
Airborne sunphotometer measurements are used to evaluate retrievals of extinction aerosol optical depth (AOD) from spatially coincident and temporally near-coincident measurements by the Ozone Monitoring Instrument (OMI) aboard the Aura satellite during the March 2006 Megacity Initiative-Local And Global Research Observations/Phase B of the Intercontinental Chemical Transport Experiment (MILAGRO/INTEX-B). The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS) flew on nine missions over the Gulf of Mexico and four in or near the Mexico City area. Retrievals of AOD from near-coincident AATS and OMI measurements are compared for three flights over the Gulf of Mexico for flight segments when the aircraft flew at altitudes 60–70 m above sea level, and for one flight over the Mexico City area where the aircraft was restricted to altitudes ~320–800 m above ground level over the rural area and ~550–750 m over the city. OMI-measured top of atmosphere (TOA) reflectances are routinely inverted to yield aerosol products such as AOD and aerosol absorption optical depth (AAOD) using two different retrieval algorithms: a near-UV (OMAERUV) and a multiwavelength (OMAERO) technique. This study uses the archived Collection 3 data products from both algorithms. In particular, AATS and OMI AOD comparisons are presented for AATS data acquired in 20 OMAERUV retrieval pixels (15 over water) and 19 OMAERO pixels (also 15 over water). At least four pixels for one of the over-water coincidences and all pixels for the over-land case were cloud-free. Coincident AOD retrievals from 17 pixels of the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua are available for two of the over-water flights and are shown to agree with AATS AODs to within root mean square (RMS) differences of 0.00–0.06, depending on wavelength. Near-coincident ground-based AOD measurements from ground-based sun/sky radiometers operated as part of the Aerosol Robotic Network (AERONET) at three sites in and near Mexico City are also shown and are generally consistent with the AATS AODs (which exclude any AOD below the aircraft) both in magnitude and spectral dependence. The OMAERUV algorithm retrieves AODs corresponding to a non-absorbing aerosol model for all three over-water comparisons whereas the OMAERO algorithm retrieves best-fit AODs corresponding to an absorbing biomass-burning aerosol model for two of the three over-water cases. For the four cloud-free pixels in one over-water coincidence (10 March), the OMAERUV retrievals underestimate the AATS AODs by ~0.20, which exceeds the expected retrieval uncertainty, but retrieved AODs agree with AATS values within uncertainties for the other two over-water events. When OMAERO retrieves AODs corresponding to a biomass-burning aerosol over water, the values significantly overestimate the AATS AODs (by up to 0.55). For the Mexico City coincidence, comparisons are presented for a non-urban region ~50–70 km northeast of the city and for a site near the center of the city. OMAERUV retrievals are consistent with AERONET AOD magnitudes for the non-urban site, but are nearly double the AATS and AERONET AODs (with differences of up to 0.29) in the center of the city. Corresponding OMAERO retrievals exceed the AATS and/or AERONET AODs by factors of 3 to 10
- …
