101 research outputs found

    Common fixed points for self-mappings on partial metric spaces

    Get PDF
    In this paper, we prove some results of a common fixed point for two self-mappings on partial metric spaces. Our results generalize some interesting results of Ilic et al. (Appl. Math. Lett. 24:1326-1330, 2011). We conclude with a result of the existence of a fixed point for set-valued mappings in the context of 0-complete partial metric spaces

    Common fixed points of g-quasicontractions and related mappings in 0-complete partial metric spaces

    Get PDF
    Common fixed point results are obtained in 0-complete partial metric spaces under various contractive conditions, including g-quasicontractions and mappings with a contractive iterate. In this way, several results obtained recently are generalized. Examples are provided when these results can be applied and neither corresponding metric results nor the results with the standard completeness assumption of the underlying partial metric space can

    Probing the size of proteins with glass nanopores

    Get PDF
    Single molecule studies using nanopores have gained attention due to the ability to sense single molecules in aqueous solution without the need to label them. In this study, short DNA molecules and proteins were detected with glass nanopores, whose sensitivity was enhanced by electron reshaping which decreased the nanopore diameter and created geometries with a reduced sensing length. Further, proteins having molecular weights (MW) ranging from 12 kDa to 480 kDa were detected, which showed that their corresponding current peak amplitude changes according to their MW. In the case of the 12 kDa ComEA protein, its DNA-binding properties to an 800 bp long DNA molecule was investigated. Moreover, the influence of the pH on the charge of the protein was demonstrated by showing a change in the translocation direction. This work emphasizes the wide spectrum of detectable molecules using nanopores from glass nanocapillaries, which stand out because of their inexpensive, lithography-free, and rapid manufacturing proces

    Imaging of Optically Active Defects with Nanometer Resolution.

    Get PDF
    Point defects significantly influence the optical and electrical properties of solid-state materials due to their interactions with charge carriers, which reduce the band-to-band optical transition energy. There has been a demand for developing direct optical imaging methods that would allow in situ characterization of individual defects with nanometer resolution. Here, we demonstrate the localization and quantitative counting of individual optically active defects in monolayer hexagonal boron nitride using single molecule localization microscopy. By exploiting the blinking behavior of defect emitters to temporally isolate multiple emitters within one diffraction limited region, we could resolve two defect emitters with a point-to-point distance down to ten nanometers. The results and conclusion presented in this work add unprecedented dimensions toward future applications of defects in quantum information processing and biological imaging

    Probing the size of proteins with glass nanopores

    Get PDF
    Single molecule studies using nanopores have gained attention due to the ability to sense single molecules in aqueous solution without the need to label them. In this study, short DNA molecules and proteins were detected with glass nanopores, whose sensitivity was enhanced by electron reshaping which decreased the nanopore diameter and created geometries with a reduced sensing length. Further, proteins having molecular weights (MW) ranging from 12 kDa to 480 kDa were detected, which showed that their corresponding current peak amplitude changes according to their MW. In the case of the 12 kDa ComEA protein, its DNA-binding properties to an 800 bp long DNA molecule was investigated. Moreover, the influence of the pH on the charge of the protein was demonstrated by showing a change in the translocation direction. This work emphasizes the wide spectrum of detectable molecules using nanopores from glass nanocapillaries, which stand out because of their inexpensive, lithography-free, and rapid manufacturing process

    CVD Graphene Contacts for Lateral Heterostructure MoS2{_2} Field Effect Transistors

    Full text link
    Intensive research is carried out on two-dimensional materials, in particular molybdenum disulfide, towards high-performance transistors for integrated circuits. Fabricating transistors with ohmic contacts is challenging due to the high Schottky barrier that severely limits the transistors' performance. Graphene-based heterostructures can be used in addition or as a substitute for unsuitable metals. We present lateral heterostructure transistors made of scalable chemical vapor-deposited molybdenum disulfide and chemical vapor-deposited graphene with low contact resistances of about 9 k{\Omega}{\mu}m and high on/off current ratios of 10${^8}. We also present a theoretical model calibrated on our experiments showing further potential for scaling transistors and contact areas into the few nanometers range and the possibility of a strong performance enhancement by means of layer optimizations that would make transistors promising for use in future logic circuits.Comment: 23 page
    • …
    corecore