51,085 research outputs found
Reionization Through the Lens of Percolation Theory
The reionization of intergalactic hydrogen has received intense theoretical
scrutiny over the past two decades. Here, we approach the process formally as a
percolation process and phase transition. Using semi-numeric simulations, we
demonstrate that an infinitely-large ionized region abruptly appears at an
ionized fraction of ~0.1 and quickly grows to encompass most of the ionized
gas: by an ionized fraction of 0.3, nearly ninety percent of the ionized
material is part of this region. Throughout most of reionization, nearly all of
the intergalactic medium is divided into just two regions, one ionized and one
neutral, and both infinite in extent. We also show that the discrete ionized
regions that exist before and near this transition point follow a near-power
law distribution in volume, with equal contributions to the total filling
factor per logarithmic interval in size up to a sharp cutoff in volume. These
qualities are generic to percolation processes, with the detailed behavior a
result of long-range correlations in the underlying density field. These
insights will be crucial to understanding the distribution of ionized and
neutral gas during reionization and provide precise meaning to the intuitive
description of reionization as an "overlap" process.Comment: 16 pages, version accepted by MNRAS (conclusions unchanged from
original
Photo-heating and the fate of hard photons during the reionisation of HeII by quasars
We use a combination of analytic and numerical arguments to consider the
impact of quasar photo-heating during HeII reionisation on the thermal
evolution of the intergalactic medium (IGM). We demonstrate that rapid (\Delta
z 10^4 K) photo-heating is difficult to achieve
across the entire IGM unless quasar spectra are significantly harder than
implied by current observational constraints. Although filtering of intrinsic
quasar radiation through dense regions in the IGM does increase the mean excess
energy per HeII photo-ionisation, it also weakens the radiation intensity and
lowers the photo-ionisation rate, preventing rapid heating over time intervals
shorter than the local photo-ionisation timescale. Moreover, the hard photons
responsible for the strongest heating are more likely to deposit their energy
inside dense clumps. The abundance of such clumps is, however, uncertain and
model-dependent, leading to a fairly large uncertainty in the photo-heating
rates. Nevertheless, although some of the IGM may be exposed to a hardened and
weakened ionising background for long periods, most of the IGM must instead be
reionised by the more abundant, softer photons and with accordingly modest
heating rates (\Delta T < 10^4 K). The repeated ionisation of fossil quasar
HeIII regions does not increase the net heating because the recombination times
in these regions typically exceed the IGM cooling times and the average time
lag between successive rounds of quasar activity. Detailed line-of-sight
radiative transfer simulations confirm these expectations and predict a rich
thermal structure in the IGM during HeII reionisation. [Abridged]Comment: 20 pages, 6 figures, accepted by MNRA
Strong laws of large numbers for sub-linear expectations
We investigate three kinds of strong laws of large numbers for capacities
with a new notion of independently and identically distributed (IID) random
variables for sub-linear expectations initiated by Peng. It turns out that
these theorems are natural and fairly neat extensions of the classical
Kolmogorov's strong law of large numbers to the case where probability measures
are no longer additive. An important feature of these strong laws of large
numbers is to provide a frequentist perspective on capacities.Comment: 10 page
Status of Spin Physics - Experimental Summary
The current status of spin physics experiments, based on talks presented at
the Third Circum-Pan-Pacific Symposium on High Energy Spin Physics held in
Beijing, 2001, is summarized in this article. Highlights of recent experimental
results at SLAC, JLab, and DESY, as well as future plans at these facilities
and at RHIC-spin are discussed.Comment: 18 pages, 7 figures, Invited talk presented at the Third
Circum-Pan-Pacific Symposium on High Energy Spin Physics held in Beijing,
October, 200
Formation and kinetics of transient metastable states in mixtures under coupled phase ordering and chemical demixing
We present theory and simulation of simultaneous chemical demixing and phase
ordering in a polymer-liquid crystal mixture in conditions where isotropic-
isotropic phase separation is metastable with respect to isotropic-nematic
phase transition. It is found that mesophase formation proceeds by a transient
metastable phase that surround the ordered phase, and whose lifetime is a
function of the ratio of diffusional to orientational mobilities. It is shown
that kinetic phase ordering in polymer-mesogen mixtures is analogous to kinetic
crystallization in polymer solutions.Comment: 17 pages, 5 figures accepted for publication in EP
Review of morphology dependent charge carrier mobility in MEH-PPV
Charge carrier mobility in poly(2-methoxy,5(2'-ethyl-hexyloxy)-p-phenylene vinylene) (MEH-PPV) films were measured as a function of temperature and electric field parallel and perpendicular to the substrate for devices prepared from different solvents and under different processing conditions Bulk structural morphology was characterized by various X-ray diffraction measurements such as wide angle, small angle and X-ray reflection. Surface morphology was characterized using various scanning probe microscopic techniques Mobilities were found to follow Gaussian disorder model (GDM) and to be highly anisotropic not only depending on the solvents used but also on the film preparation method such as spin-coating or drop-casting While no direct correlation was found between charge carrier mobility and photoluminescence, charge transport parameters were correlated with structural morpholog
The Peculiar Velocity Function of Galaxy Clusters
The peculiar velocity function of clusters of galaxies is determined using an
accurate sample of cluster velocities based on Tully-Fisher distances of Sc
galaxies (Giovanelli et al 1995b). In contrast with previous results based on
samples with considerably larger velocity uncertainties, the observed velocity
function does not exhibit a tail of high velocity clusters. The results
indicate a low probability of \,5\% of finding clusters with
one-dimensional velocities greater than 600 {\kms}. The root-mean-square
one-dimensional cluster velocity is 29328 {\kms}. The observed cluster
velocity function is compared with expectations from different cosmological
models. The absence of a high velocity tail in the observed function is most
consistent with a low mass-density (0.3) CDM model, and is
inconsistent at level with = 1.0 CDM and HDM models.
The root-mean-square one-dimensional cluster velocities in these models
correspond, respectively, to 314, 516, and 632 {\kms} (when convolved with the
observational uncertainties). Comparison with the observed RMS cluster velocity
of 29328 {\kms} further supports the low-density CDM model.Comment: revised version accepted for publication in ApJ Letters, 18 pages,
uuencoded PostScript with 3 figures included; complete paper available
through WWW at http://www.astro.princeton.edu/~library/prep.htm
- …