145 research outputs found
Depth profile of the ferromagnetic order in a YBaCuO / LaCaMnO superlattice on a LSAT substrate: a polarized neutron reflectometry study
Using polarized neutron reflectometry (PNR) we have investigated a
YBa2Cu3O7(10nm)/La2/3Ca1/3MnO3(9nm)]10 (YBCO/LCMO) superlattice grown by pulsed
laser deposition on a La0.3Sr0.7Al0.65Ta0.35O3 (LSAT) substrate. Due to the
high structural quality of the superlattice and the substrate, the specular
reflectivity signal extends with a high signal-to-background ratio beyond the
fourth order superlattice Bragg peak. This allows us to obtain more detailed
and reliable information about the magnetic depth profile than in previous PNR
studies on similar superlattices that were partially impeded by problems
related to the low temperature structural transitions of the SrTiO3 substrates.
In agreement with the previous reports, our PNR data reveal a strong magnetic
proximity effect showing that the depth profile of the magnetic potential
differs significantly from the one of the nuclear potential that is given by
the YBCO and LCMO layer thickness. We present fits of the PNR data using
different simple block-like models for which either a ferromagnetic moment is
induced on the YBCO side of the interfaces or the ferromagnetic order is
suppressed on the LCMO side. We show that a good agreement with the PNR data
and with the average magnetization as obtained from dc magnetization data can
only be obtained with the latter model where a so-called depleted layer with a
strongly suppressed ferromagnetic moment develops on the LCMO side of the
interfaces. The models with an induced ferromagnetic moment on the YBCO side
fail to reproduce the details of the higher order superlattice Bragg peaks and
yield a wrong magnitude of the average magnetization. We also show that the PNR
data are still consistent with the small, ferromagnetic Cu moment of 0.25muB
that was previously identified with x-ray magnetic circular dichroism and x-ray
resonant magnetic reflectometry measurements on the same superlattice.Comment: 11 pages, 7 figure
Feasibility of study magnetic proximity effects in bilayer "superconductor/ferromagnet" using waveguide-enhanced Polarized Neutron Reflectometry
A resonant enhancement of the neutron standing waves is proposed to use in
order to increase the magnetic neutron scattering from a
"superconductor/ferromagnet"(S/F) bilayer. The model calculations show that
usage of this effect allows to increase the magnetic scattering intensity by
factor of hundreds. Aspects related to the growth procedure (order of
deposition, roughness of the layers etc) as well as experimental conditions
(resolution, polarization of the neutron beam, background etc) are also
discussed.
Collected experimental data for the S/F heterostructure
Cu(32nm)/V(40nm)/Fe(1nm)/MgO confirmed the presence of a resonant 60-fold
amplification of the magnetic scattering.Comment: The manuscript of the article submitted to Crysstalography Reports.
23 pages, 5 figure
Magnetic Proximity Effect in YBa₂Cu₃O₇/La<sub>2/3</sub>Ca<sub>1/3</sub>MnO₃ and YBa₂Cu₃O₇/LaMnO₃₊ Superlattices
Using neutron reflectometry and resonant x-ray techniques we studied the magnetic proximity effect (MPE) in superlattices composed of superconducting YBa₂Cu₃O₇ and ferromagnetic-metallic La0.67Ca0.33MnO₃ or ferromagnetic-insulating LaMnO₃₊. We find that the MPE strongly depends on the electronic state of the manganite layers, being pronounced for the ferromagnetic-metallic La0.67Ca0.33MnO₃ and almost absent for ferromagnetic-insulating LaMnO₃₊. We also detail the change of the magnetic depth profile due to the MPE and provide evidence for its intrinsic nature
Comparison of codes assessing galactic cosmic radiation exposure of aircraft crew
The assessment of the exposure to cosmic radiation onboard aircraft is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher onboard aircraft than at ground level and its intensity depends on the solar activity. The dose is usually estimated using codes validated by the experimental data. In this paper, a comparison of various codes is presented, some of them are used routinely, to assess the dose received by the aircraft crew caused by the galactic cosmic radiation. Results are provided for periods close to solar maximum and minimum and for selected flights covering major commercial routes in the world. The overall agreement between the codes, particularly for those routinely used for aircraft crew dosimetry, was better than ±20 % from the median in all but two cases. The agreement within the codes is considered to be fully satisfactory for radiation protection purpose
First steps towards a fast-neutron therapy planning program
<p>Abstract</p> <p>Background</p> <p>The Monte Carlo code GEANT4 was used to implement first steps towards a treatment planning program for fast-neutron therapy at the FRM II research reactor in Garching, Germany. Depth dose curves were calculated inside a water phantom using measured primary neutron and simulated primary photon spectra and compared with depth dose curves measured earlier. The calculations were performed with GEANT4 in two different ways, simulating a simple box geometry and splitting this box into millions of small voxels (this was done to validate the voxelisation procedure that was also used to voxelise the human body).</p> <p>Results</p> <p>In both cases, the dose distributions were very similar to those measured in the water phantom, up to a depth of 30 cm. In order to model the situation of patients treated at the FRM II MEDAPP therapy beamline for salivary gland tumors, a human voxel phantom was implemented in GEANT4 and irradiated with the implemented MEDAPP neutron and photon spectra. The 3D dose distribution calculated inside the head of the phantom was similar to the depth dose curves in the water phantom, with some differences that are explained by differences in elementary composition. The lateral dose distribution was studied at various depths. The calculated cumulative dose volume histograms for the voxel phantom show the exposure of organs at risk surrounding the tumor.</p> <p>Conclusions</p> <p>In order to minimize the dose to healthy tissue, a conformal treatment is necessary. This can only be accomplished with the help of an advanced treatment planning system like the one developed here. Although all calculations were done for absorbed dose only, any biological dose weighting can be implemented easily, to take into account the increased radiobiological effectiveness of neutrons compared to photons.</p
EURADOS education and training activities
This paper provides a summary of the Education and Training (E&amp ; T) activities that have been developed and organized by the European Radiation Dosimetry Group (EURADOS) in recent years and in the case of Training Courses over the last decade. These E&amp ; T actions include short duration Training Courses on well-established topics organized within the activity of EURADOS Working Groups (WGs), or one-day events integrated in the EURADOS Annual Meeting (workshops, winter schools, the intercomparison participants' sessions and the learning network, among others). Moreover, EURADOS has recently established a Young Scientist Grant and a Young Scientist Award. The Grant supports young scientists by encouraging them to perform research projects at other laboratories of the EURADOS network. The Award is given in recognition of excellent work developed within the WGs' work programme. Additionally, EURADOS supports the dissemination of knowledge in radiation dosimetry by promoting and endorsing conferences such as the individual monitoring (IM) series, the neutron and ion dosimetry symposia (NEUDOS) and contributions to E&amp ; T sessions at specific events
- …