362 research outputs found
Solitonic spin-liquid state due to the violation of the Lifshitz condition in FeTe
A combination of phenomenological analysis and M\"ossbauer spectroscopy
experiments on the tetragonal FeTe system indicates that the magnetic
ordering transition in compounds with higher Fe-excess, 0.11, is
unconventional. Experimentally, a liquid-like magnetic precursor with
quasi-static spin-order is found from significantly broadened M\"ossbauer
spectra at temperatures above the antiferromagnetic transition. The
incommensurate spin-density wave (SDW) order in FeTe is described by a
magnetic free energy that violates the weak Lifshitz condition in the Landau
theory of second-order transitions. The presence of multiple Lifshitz
invariants provides the mechanism to create multidimensional, twisted, and
modulated solitonic phases.Comment: 5 pages, 2 figure
Pressure-induced ferromagnetism due to an anisotropic electronic topological transition in Fe1.08Te
A rapid and anisotropic modification of the Fermi-surface shape can be
associated with abrupt changes in crystalline lattice geometry or in the
magnetic state of a material. In this study we show that such an electronic
topological transition is at the basis of the formation of an unusual
pressure-induced tetragonal ferromagnetic phase in FeTe. Around 2 GPa,
the orthorhombic and incommensurate antiferromagnetic ground-state of
FeTe is transformed upon increasing pressure into a tetragonal
ferromagnetic state via a conventional first-order transition. On the other
hand, an isostructural transition takes place from the paramagnetic
high-temperature state into the ferromagnetic phase as a rare case of a `type
0' transformation with anisotropic properties. Electronic-structure
calculations in combination with electrical resistivity, magnetization, and
x-ray diffraction experiments show that the electronic system of FeTe
is instable with respect to profound topological transitions that can drive
fundamental changes of the lattice anisotropy and the associated magnetic
order.Comment: 7 pages, 4 figur
Recommended from our members
Visualization of localized perturbations on a (001) surface of the ferromagnetic semimetal EuB6
We performed scanning tunneling microscopy (STM) and spectroscopy on a (001) surface of the ferromagnetic semimetal EuB6. Large-amplitude oscillations emanating from the elastic scattering of electrons by the surface impurities are observed in topography and in differential conductance maps. Fourier transform of the conductance maps embracing these regions indicate a holelike dispersion centered around the Γ point of the two-dimensional Brillouin zone. Using density functional theory slab calculations, we identify a spin-split surface state, which stems from the dangling pz orbitals of the apical boron atom. Hybridization with bulk electronic states leads to a resonance enhancement in certain regions around the Γ point, contributing to the remarkably strong real-space response around static point defects, which are observed in STM measurements
First-order structural transition in the magnetically ordered phase of Fe1.13Te
Specific heat, resistivity, magnetic susceptibility, linear thermal expansion
(LTE), and high-resolution synchrotron X-ray powder diffraction investigations
of single crystals Fe1+yTe (0.06 < y < 0.15) reveal a splitting of a single,
first-order transition for y 0.12. Most
strikingly, all measurements on identical samples Fe1.13Te consistently
indicate that, upon cooling, the magnetic transition at T_N precedes the
first-order structural transition at a lower temperature T_s. The structural
transition in turn coincides with a change in the character of the magnetic
structure. The LTE measurements along the crystallographic c-axis displays a
small distortion close to T_N due to a lattice striction as a consequence of
magnetic ordering, and a much larger change at T_s. The lattice symmetry
changes, however, only below T_s as indicated by powder X-ray diffraction. This
behavior is in stark contrast to the sequence in which the phase transitions
occur in Fe pnictides.Comment: 6 page
Hybridization gap and Fano resonance in SmB
We present results of Scanning Tunneling Microscopy and Spectroscopy (STS)
measurements on the "Kondo insulator" SmB. The vast majority of surface
areas investigated was reconstructed but, infrequently, also patches of varying
size of non-reconstructed, Sm- or B-terminated surfaces were found. On the
smallest patches, clear indications for the hybridization gap and
inter-multiplet transitions were observed. On non-reconstructed surface areas
large enough for coherent co-tunneling we were able to observe clear-cut Fano
resonances. Our locally resolved STS indicated considerable finite conductance
on all surfaces independent of their structure.Comment: 5 pages, 4 figure
Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies?
Axisymmetric magnetic lines of nanometer sizes (chiral vortices or skyrmions)
have been predicted to exist in a large group of noncentrosymmetric crystals
more than two decades ago. Recently these magnetic textures have been directly
observed in nanolayers of cubic helimagnets and monolayers of magnetic metals.
We develop a micromagnetic theory of chiral skyrmions in thin magnetic layers
for magnetic materials with intrinsic and induced chirality. Such particle-like
and stable micromagnetic objects can exist in broad ranges of applied magnetic
fields including zero field. Chiral skyrmions can be used as a new type of
highly mobile nanoscale data carriers
Pressure-induced phase transitions and high-pressure tetragonal phase of Fe1.08Te
We report the effects of hydrostatic pressure on the temperature-induced
phase transitions in Fe1.08Te in the pressure range 0-3 GPa using synchrotron
powder x-ray diffraction (XRD). The results reveal a plethora of phase
transitions. At ambient pressure, Fe1.08Te undergoes simultaneous first-order
structural symmetry-breaking and magnetic phase transitions, namely from the
paramagnetic tetragonal (P4/nmm) to the antiferromagnetic monoclinic (P2_1/m)
phase. We show that, at a pressure of 1.33 GPa, the low temperature structure
adopts an orthorhombic symmetry. More importantly, for pressures of 2.29 GPa
and higher, a symmetry-conserving tetragonal-tetragonal phase transition has
been identified from a change in the c/a ratio of the lattice parameters. The
succession of different pressure and temperature-induced structural and
magnetic phases indicates the presence of strong magneto-elastic coupling
effects in this material.Comment: 11 page
Disorder-driven electronic localization and phase separation in superconducting Fe1+yTe0.5Se0.5 single crystals
We have investigated the influence of Fe-excess on the electrical transport
and magnetism of Fe1+yTe0.5Se0.5 (y=0.04 and 0.09) single crystals. Both
compositions exhibit resistively determined superconducting transitions (Tc)
with an onset temperature of about 15 K. From the width of the superconducting
transition and the magnitude of the lower critical field Hc1, it is inferred
that excess of Fe suppresses superconductivity. The linear and non-linear
responses of the ac-susceptibility show that the superconducting state for
these compositions is inhomogeneous. A possible origin of this phase separation
is a magnetic coupling between Fe-excess occupying interstitial sites in the
chalcogen planes and those in the Fe-square lattice. The temperature derivative
of the resistivity drho/dT in the temperature range Tc < T < Ta with Ta being
the temperature of a magnetic anomaly, changes from positive to negative with
increasing Fe. A log 1/T divergence of the resistivity above Tc in the sample
with higher amount of Fe suggests a disorder driven electronic localization.Comment: 7 page
Polaronic state and nanometer-scale phase separation in colossal magnetoresistive manganites
High resolution topographic images obtained by scanning tunneling microscope
in the insulating state of Pr0.68Pb0.32MnO3 single crystals showed regular
stripe-like or zigzag patterns on a width scale of 0.4 - 0.5 nm confirming a
high temperature polaronic state. Spectroscopic studies revealed inhomogeneous
maps of zero-bias conductance with small patches of metallic clusters on length
scale of 2 - 3 nm only within a narrow temperature range close to the
metal-insulator transition. The results give a direct observation of polarons
in the insulating state, phase separation of nanometer-scale metallic clusters
in the paramagnetic metallic state, and a homogeneous ferromagnetic state
- …