17 research outputs found

    Soliton pair dynamics in patterned ferromagnetic ellipses

    Full text link
    Confinement alters the energy landscape of nanoscale magnets, leading to the appearance of unusual magnetic states, such as vortices, for example. Many basic questions concerning dynamical and interaction effects remain unanswered, and nanomagnets are convenient model systems for studying these fundamental physical phenomena. A single vortex in restricted geometry, also known as a non-localized soliton, possesses a characteristic translational excitation mode that corresponds to spiral-like motion of the vortex core around its equilibrium position. Here, we investigate, by a microwave reflection technique, the dynamics of magnetic soliton pairs confined in lithographically defined, ferromagnetic Permalloy ellipses. Through a comparison with micromagnetic simulations, the observed strong resonances in the subgigahertz frequency range can be assigned to the translational modes of vortex pairs with parallel or antiparallel core polarizations. Vortex polarizations play a negligible role in the static interaction between two vortices, but their effect dominates the dynamics.Comment: supplemental movies on http://www.nature.com/nphys/journal/v1/n3/suppinfo/nphys173_S1.htm

    Time-resolved imaging of magnetic vortex dynamics using holography with extended reference autocorrelation by linear differential operator

    Get PDF
    The magnetisation dynamics of the vortex core and Landau pattern of magnetic thin-film elements has been studied using holography with extended reference autocorrelation by linear differential operator (HERALDO). Here we present the first time-resolved x-ray measurements using this technique and investigate the structure and dynamics of the domain walls after excitation with nanosecond pulsed magnetic fields. It is shown that the average magnetisation of the domain walls has a perpendicular component that can change dynamically depending on the parameters of the pulsed excitation. In particular, we demonstrate the formation of wave bullet-like excitations, which are generated in the domain walls and can propagate inside them during the cyclic motion of the vortex core. Based on numerical simulations we also show that, besides the core, there are four singularities formed at the corners of the pattern. The polarisation of these singularities has a direct relation to the vortex core, and can be switched dynamically by the wave bullets excited with a magnetic pulse of specific parameters. The subsequent dynamics of the Landau pattern is dependent on the particular configuration of the polarisations of the core and the singularities

    Modal spectrum of permalloy disks excited by in-plane magnetic fields

    Get PDF
    The mode spectrum of 4 micron sized ferromagnetic permalloy disks exhibiting a vortex structure in equilibrium is investigated in detail. Normal modes accessible by in-plane field excitations are examined. By means of spatially resolved techniques using Kerr microscopy we recorded the modal structure of the disks at zero bias field. We employed pulsed and continuous wave excitation. As a result we report on normal modes up to the fifth order. Using inductive and spatially resolved resonance measurements the evolution of the mode spectrum as a function of an external magnetic field was investigated. Quantized modes in longitudinal as well as in transverse direction in the uniform magnetized disks were observed. Good agreement between the experimental results and those from micromagnetic simulations was found
    corecore