4,325 research outputs found

    Avoiding space robot collisions utilizing the NASA/GSFC tri-mode skin sensor

    Get PDF
    A capacitance based proximity sensor, the 'Capaciflector' (Vranish 92), has been developed at the Goddard Space Flight Center of NASA. We had investigated the use of this sensor for avoiding and maneuvering around unexpected objects (Mahalingam 92). The approach developed there would help in executing collision-free gross motions. Another important aspect of robot motion planning is fine motion planning. Let us classify manipulator robot motion planning into two groups at the task level: gross motion planning and fine motion planning. We use the term 'gross planning' where the major degrees of freedom of the robot execute large motions, for example, the motion of a robot in a pick and place type operation. We use the term 'fine motion' to indicate motions of the robot where the large dofs do not move much, and move far less than the mirror dofs, such as in inserting a peg in a hole. In this report we describe our experiments and experiences in this area

    Effect of hydrogen on deformation structure and properties of CMSX-2 nickel-base single-crystal superalloy

    Get PDF
    Material used in this study was a heat of the alloy CMSX-2. This nickel-based superalloy was provided in the form of oriented single crystals, solutionized for 3 hrs at 1315 C. It was then usually heat treated as follows: 1050 C/16h/air cool + 850 C/48h/air cool. The resulting microstructure is dominated by cuboidal, ordered gamma precipitates with a volume fraction of about 75% and an average size of 0.5 microns. In brief, the most compelling hydrogen induced-changes in deformation structure are: (1) enhanced dislocation accumulation in the gamma matrix; and (2) more extensive cross-slip of superdislocations in the gamma precipitates. The enhanced dislocation density in gamma acts to decrease the mean free path of a superdislocation, while easier cross slip hinders superdislocation movement by providing pinning points in the form of sessile jobs. Both processes contribute to the increase of flow stress and the notable work hardening that occurs prior to fracture

    InGaAs/GaAs/alkanethiolate radial superlattices: Experimental

    Full text link
    A radial InGaAs/GaAs/1-hexadecanethiol superlattice is fabricated by the roll-up of a strained InGaAs/GaAs bilayer passivated with a molecular self-assembled monolayer. Our technique allows the formation of multi-period inorganic/organic hybrid heterostructures. This paper contains the detailed experimental description of how to fabricate these structures.Comment: 2 pages, no figures, Version 2; minor changes (fixed typos and update references

    Structural analysis of the Arunta Block and Amadeus Basin (Central Australia) by means of digital remote sensing techniques and field data

    Full text link
    Der proterozoische Arunta Block und das altpaläozoische Amadeus Basin zeichnen sich durch jeweils eigenständige lithologische Abfolgen und tektonische Deformationstypen aus. Der Kontaktbereich dieser intrakratonen Blöcke wirft seit Jahren Diskussionen hinsichtlich des tektonischen Baus auf: von hypothetischen weitreichenden Überschiebungsdecken (nappes) bis hin zu einfachen kleindimensionierten Störungen oder Verschleppungen (thrusts). Im Rahmen dieser Arbeit wird versucht, diese Elemente anhand von multispektralen Landsat-TM-Daten und Analysen von Luftbildern und ERS-1-Daten makroskopisch zu erfassen und zu deuten. Es ist möglich, Gesteinseinheiten und die unterschiedlichen Deformationsstile repräsentativer Untersuchungsgebiete zu differenzieren, sowie auf der Basis der topographischenKarten ein digitales Höhenmodell der Region zu erstellen, das die Zusammenhänge zwischen morphologischen Gegebenheiten vor Ort und imSatellitenbild in Bezug auf die Verbreitung von Lithologien und Störungszonen verdeutlicht. Auf diese Weise entsteht das Bild eines komplexen tektonischen Spannungsfeldes, das für jeden intrakratonen Block individuelle, zeitlich voneinander getrennt wirkende Ereignisse als Auslöser für die anzutreffenden Strukturen vorsieht.The Proterozoic Arunta Block and the younger late Palaeozoic Amadeus Basin each show significant lithological sequences and tectonic deformation styles. Since years the contact zone of these intracratonic blocks raises controversial discussions concerning its tectonic origin: from hypothetic widespread nappes to simple faults and thrusts of smaller dimension everything is taken into consideration. Within the scope of this paper it is attempted to detect their macroscopic pattern by applying multispectral and further remote sensing data analysis of aerial photographs, Landsat-TM and ERS-1data. It is possible to distinguish rock units and different deformation styles of representative areas as well as to create a digital elevation model of the region on the basis of topographic maps that elucidates the coherence of morphological features in place and in the satellite image as far as the propagation of lithologies and fault zones is concerned. It arises the picture of a complex tectonictension field, that contains individual tectonic events separated by time for each structure within the intracratonic blocks

    Superlattice properties of carbon nanotubes in a transverse electric field

    Get PDF
    Electron motion in a (n,1) carbon nanotube is shown to correspond to a de Broglie wave propagating along a helical line on the nanotube wall. This helical motion leads to periodicity of the electron potential energy in the presence of an electric field normal to the nanotube axis. The period of this potential is proportional to the nanotube radius and is greater than the interatomic distance in the nanotube. As a result, the behavior of an electron in a (n,1) nanotube subject to a transverse electric field is similar to that in a semiconductor superlattice. In particular, Bragg scattering of electrons from the long-range periodic potential results in the opening of gaps in the energy spectrum of the nanotube. Modification of the bandstructure is shown to be significant for experimentally attainable electric fields, which raises the possibility of applying this effect to novel nanoelectronic devices.Comment: 7 pages, 3 figure

    Kinetic stabilization of Fe film on (4 by 2)-GaAs(100)

    Full text link
    We grow Fe film on (4 by 2)-GaAs(100) at low temperature, (~ 130 K) and study their chemical structure by photoelectron spectroscopy using synchrotron radiation. We observe the effective suppression of As segregation and remarkable reduction of alloy formation near the interface between Fe and substrate. Hence, this should be a way to grow virtually pristine Fe film on GaAs(100). Further, the Fe film is found stable against As segregation even after warmed up to room temperature. There only forms very thin, ~ 8 angstrom thick interface alloy. It is speculated that the interface alloy forms via surface diffusion mediated by interface defects formed during the low temperature growth of the Fe film. Further out-diffusion of both Ga and As are suppressed because it should then proceed via inefficient bulk diffusion.Comment: 4 figure

    Effects of angular shift transformations between movements and their visual feedback on coordination in unimanual circling

    Get PDF
    Tool actions are characterized by a transformation between movements and their resulting consequences in the environment. This transformation has to be taken into account when tool actions are planned and executed. We investigated how angular shift transformations between circling movements and their visual feedback affect the coordination of this feedback with visual events in the environment. We used a task that required participants to coordinate the visual feedback of a circular hand movement (presented on the right side of a screen) with a circling stimulus (presented on the left side of a screen). Four stimulus-visual feedback relations were instructed: same or different rotations of stimulus and visual feedback, either in same or different y-directions. Visual speed was varied in three levels (0.8, 1, and 1.2 Hz). The movement-visual feedback relation was manipulated using eight angular shifts: (-180, -135, -90, -45, 0, 45, 90, and 135°). Participants were not able to perform the different rotation/different y-direction pattern, but instead fell into the different rotation/same y-direction pattern. The different rotation/same y-direction pattern and the same rotation/same y-direction pattern were performed equally well, performance was worse in the same rotation/different y-direction pattern. Best performance was observed with angular shifts 0 and -45° and performance declined with larger angular shifts. Further, performance was better with negative angular shifts than with positive angular shifts. Participants did not fully take the angular shift transformation into account: when the angular shifts were negative the visual feedback was more in advance, and when angular shifts were positive the visual feedback was less in advance of the stimulus than in 0° angular shift. In conclusion, the presence and the magnitude of angular shift transformations affect performance. Internal models do not fully take the shift transformation into account

    Classical properties of low-dimensional conductors: Giant capacitance and non-Ohmic potential drop

    Full text link
    Electrical field arising around an inhomogeneous conductor when an electrical current passes through it is not screened, as distinct from 3D conductors, in low-dimensional conductors. As a result, the electrical field depends on the global distribution of the conductivity sigma(x) rather than on the local value of it, inhomogeneities of sigma(x) produce giant capacitances C(omega) that show frequency dependence at relatively low omega, and electrical fields develop in vast regions around the inhomogeneities of sigma(x). A theory of these phenomena is presented for 2D conductors.Comment: 5 pages, two-column REVTeX, to be published in Physical Review Letter

    Ponesimod, a selective S1P1 receptor modulator: a potential treatment for multiple sclerosis and other immune-mediated diseases

    Get PDF
    The first oral treatment for relapsing multiple sclerosis, the nonselective sphingosine-1-phosphate receptor (S1PR) modulator fingolimod, led to identification of a pivotal role of sphingosine-1-phosphate and one of its five known receptors, S1P(1)R, in regulation of lymphocyte trafficking in multiple sclerosis. Modulation of S1P3R, initially thought to cause some of fingolimod's side effects, prompted the search for novel compounds with high selectivity for S1P1R. Ponesimod is an orally active, selective S1P(1)R modulator that causes dose-dependent sequestration of lymphocytes in lymphoid organs. In contrast to the long half-life/slow elimination of fingolimod, ponesimod is eliminated within 1 week of discontinuation and its pharmacological effects are rapidly reversible. Clinical data in multiple sclerosis have shown a dose-dependent therapeutic effect of ponesimod and defined 20mg as a daily dose with desired efficacy, and acceptable safety and tolerability. Phase II clinical data have also shown therapeutic efficacy of ponesimod in psoriasis. These findings have increased our understanding of psoriasis pathogenesis and suggest clinical utility of S1P(1)R modulation for treatment of various immune-mediated disorders. A gradual dose titration regimen was found to minimize the cardiac effects associated with initiation of ponesimod treatment. Selectivity for S1P(1)R, rapid onset and reversibility of pharmacological effects, and an optimized titration regimen differentiate ponesimod from fingolimod, and may lead to better safety and tolerability. Ponesimod is currently in phase III clinical development to assess efficacy and safety in relapsing multiple sclerosis. A phase II study is also ongoing to investigate the potential utility of ponesimod in chronic graft versus host disease
    • …
    corecore