1,117 research outputs found
Information Content in Data Sets for a Nucleated-Polymerization Model
We illustrate the use of tools (asymptotic theories of standard error
quantification using appropriate statistical models, bootstrapping, model
comparison techniques) in addition to sensitivity that may be employed to
determine the information content in data sets. We do this in the context of
recent models [23] for nucleated polymerization in proteins, about which very
little is known regarding the underlying mechanisms; thus the methodology we
develop here may be of great help to experimentalists
On the decay of turbulence in plane Couette flow
The decay of turbulent and laminar oblique bands in the lower transitional
range of plane Couette flow is studied by means of direct numerical simulations
of the Navier--Stokes equations. We consider systems that are extended enough
for several bands to exist, thanks to mild wall-normal under-resolution
considered as a consistent and well-validated modelling strategy. We point out
a two-stage process involving the rupture of a band followed by a slow
regression of the fragments left. Previous approaches to turbulence decay in
wall-bounded flows making use of the chaotic transient paradigm are
reinterpreted within a spatiotemporal perspective in terms of large deviations
of an underlying stochastic process.Comment: ETC13 Conference Proceedings, 6 pages, 5 figure
Investigation of slow collisions for (quasi) symmetric heavy systems: what can be extracted from high resolution X-ray spectra
We present a new experiment on (quasi) symmetric collision systems at
low-velocity, namely Ar ions ( a.u.) on gaseous Ar and N
targets, using low- and high-resolution X-ray spectroscopy. Thanks to an
accurate efficiency calibration of the spectrometers, we extract absolute X-ray
emission cross sections combining low-resolution X-ray spectroscopy and a
complete determination of the ion beam - gas jet target overlap. Values with
improved uncertainty are found in agreement with previous results
\cite{Tawara2001}. Resolving the whole He-like Ar Lyman series from
to 10 with our crystal spectrometer enables to determine precisely the
distribution of the electron capture probability and the
preferential level of the selective single-electron capture.
Evaluation of cross sections for this process as well as for the contribution
of multiple-capture is carried out. Their sensitivity to the
-distribution of levels populated by single-electron capture is
clearly demonstrated, providing a stringent benchmark for theories. In
addition, the hardness ratio is extracted and the influence of the decay of the
metastable state on this ratio is discussed
Modulating the phase transition temperature of giant magnetocaloric thin films by ion irradiation
Magnetic refrigeration based on the magnetocaloric effect at room temperature
is one of the most attractive alternative to the current gas
compression/expansion method routinely employed. Nevertheless, in giant
magnetocaloric materials, optimal refrigeration is restricted to the narrow
temperature window of the phase transition (Tc). In this work, we present the
possibility of varying this transition temperature into a same giant
magnetocaloric material by ion irradiation. We demonstrate that the transition
temperature of iron rhodium thin films can be tuned by the bombardment of ions
of Ne 5+ with varying fluences up to 10 14 ions cm --2 , leading to optimal
refrigeration over a large 270--380 K temperature window. The Tc modification
is found to be due to the ion-induced disorder and to the density of new
point-like defects. The variation of the phase transition temperature with the
number of incident ions opens new perspectives in the conception of devices
using giant magnetocaloric materials
Suppression of the thermal hysteresis in magnetocaloric MnAs thin film by highly charged ion bombardment
We present the investigation on the modifications of structural and magnetic
properties of MnAs thin film epitaxially grown on GaAs induced by slow highly
charged ions bombardment under well-controlled conditions. The ion-induced
defects facilitate the nucleation of one phase with respect to the other in the
first-order magneto-structural MnAs transition with a consequent suppression of
thermal hysteresis without any significant perturbation on the other structural
and magnetic properties. In particular, the irradiated film keeps the giant
magnetocaloric effect at room temperature opening new perspective on magnetic
refrigeration technology for everyday use
Characterization and Modeling of DHBT in InP/GaAsSb Technology for the Design and Fabrication of a Ka Band MMIC Oscillator
This paper presents the design of an MMIC oscillator operating at a 38âGHz frequency. This circuit was fabricated by the IIIâV Lab with the new InP/GaAsSb Double Heterojunction Bipolar Transistor (DHBT) submicronic technology (We=700ânm). The transistor used in the circuit has a 15 ÎŒm long two-finger emitter. This paper describes the complete nonlinear modeling of this DHBT, including the cyclostationary modeling of its low frequency (LF) noise sources. The specific interest of the methodology used to design this oscillator resides in being able to choose a nonlinear operating condition of the transistor from an analysis in amplifier mode. The oscillator simulation and measurement results are compared. A 38âGHz oscillation frequency with 8.6âdBm output power and a phase noise of â80âdBc/Hz at 100âKHz offset from carrier have been measured
Transient growth in Taylor-Couette flow
Transient growth due to non-normality is investigated for the Taylor-Couette
problem with counter-rotating cylinders as a function of aspect ratio eta and
Reynolds number Re. For all Re < 500, transient growth is enhanced by
curvature, i.e. is greater for eta < 1 than for eta = 1, the plane Couette
limit. For fixed Re < 130 it is found that the greatest transient growth is
achieved for eta between the Taylor-Couette linear stability boundary, if it
exists, and one, while for Re > 130 the greatest transient growth is achieved
for eta on the linear stability boundary. Transient growth is shown to be
approximately 20% higher near the linear stability boundary at Re = 310, eta =
0.986 than at Re = 310, eta = 1, near the threshold observed for transition in
plane Couette flow. The energy in the optimal inputs is primarily meridional;
that in the optimal outputs is primarily azimuthal. Pseudospectra are
calculated for two contrasting cases. For large curvature, eta = 0.5, the
pseudospectra adhere more closely to the spectrum than in a narrow gap case,
eta = 0.99
Nanoscale structuring of tungsten tip yields most coherent electron point-source
This report demonstrates the most spatially-coherent electron source ever
reported. A coherence angle of 14.3 +/- 0.5 degrees was measured, indicating a
virtual source size of 1.7 +/-0.6 Angstrom using an extraction voltage of 89.5
V. The nanotips under study were crafted using a spatially-confined,
field-assisted nitrogen etch which removes material from the periphery of the
tip apex resulting in a sharp, tungsten-nitride stabilized, high-aspect ratio
source. The coherence properties are deduced from holographic measurements in a
low-energy electron point source microscope with a carbon nanotube bundle as
sample. Using the virtual source size and emission current the brightness
normalized to 100 kV is found to be 7.9x10^8 A/sr cm^2
Global downscaling of remotely sensed soil moisture using neural networks
Characterizing soil moisture at spatiotemporal scales relevant to land surface processes (i.e.,
of the order of 1 km) is necessary in order to quantify its role in regional
feedbacks between the land surface and the atmospheric boundary layer.
Moreover, several applications such as agricultural management can benefit
from soil moisture information at fine spatial scales. Soil moisture
estimates from current satellite missions have a reasonably good temporal
revisit over the globe (2â3-day repeat time); however, their finest spatial
resolution is 9 km. NASA's Soil Moisture Active Passive (SMAP) satellite has
estimated soil moisture at two different spatial scales of 36 and 9 km since
April 2015. In this study, we develop a neural-network-based downscaling
algorithm using SMAP observations and disaggregate soil moisture to 2.25 km
spatial resolution. Our approach uses the mean monthly Normalized Differenced
Vegetation Index (NDVI) as ancillary data to quantify the subpixel
heterogeneity of soil moisture. Evaluation of the downscaled soil moisture
estimates against in situ observations shows that their accuracy is better
than or equal to the SMAP 9 km soil moisture estimates.</p
Low Energy Electron Point Projection Microscopy of Suspended Graphene, the Ultimate "Microscope Slide"
Point Projection Microscopy (PPM) is used to image suspended graphene using
low-energy electrons (100-200eV). Because of the low energies used, the
graphene is neither damaged or contaminated by the electron beam. The
transparency of graphene is measured to be 74%, equivalent to electron
transmission through a sheet as thick as twice the covalent radius of
sp^2-bonded carbon. Also observed is rippling in the structure of the suspended
graphene, with a wavelength of approximately 26 nm. The interference of the
electron beam due to the diffraction off the edge of a graphene knife edge is
observed and used to calculate a virtual source size of 4.7 +/- 0.6 Angstroms
for the electron emitter. It is demonstrated that graphene can be used as both
anode and substrate in PPM in order to avoid distortions due to strong field
gradients around nano-scale objects. Graphene can be used to image objects
suspended on the sheet using PPM, and in the future, electron holography
- âŠ