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Abstract. Characterizing soil moisture at spatiotemporal
scales relevant to land surface processes (i.e., of the order
of 1 km) is necessary in order to quantify its role in re-
gional feedbacks between the land surface and the atmo-
spheric boundary layer. Moreover, several applications such
as agricultural management can benefit from soil moisture in-
formation at fine spatial scales. Soil moisture estimates from
current satellite missions have a reasonably good temporal
revisit over the globe (2–3-day repeat time); however, their
finest spatial resolution is 9 km. NASA’s Soil Moisture Ac-
tive Passive (SMAP) satellite has estimated soil moisture at
two different spatial scales of 36 and 9 km since April 2015.
In this study, we develop a neural-network-based downscal-
ing algorithm using SMAP observations and disaggregate
soil moisture to 2.25 km spatial resolution. Our approach
uses the mean monthly Normalized Differenced Vegetation
Index (NDVI) as ancillary data to quantify the subpixel het-
erogeneity of soil moisture. Evaluation of the downscaled
soil moisture estimates against in situ observations shows
that their accuracy is better than or equal to the SMAP 9 km
soil moisture estimates.

1 Introduction

Soil moisture is a key variable constraining the fluxes be-
tween the land surface and the atmosphere boundary, and
therefore it plays a key role in regulating the feedbacks be-
tween the terrestrial water, carbon and energy cycles (Berg
et al., 2014; McColl et al., 2017; Seneviratne et al., 2010).
Soil moisture partitions the surface energy between latent
heat and sensible heat fluxes (Entekhabi et al., 1996; Gen-
tine et al., 2007, 2011; Koster et al., 2010). Moreover, plant
photosynthesis is regulated by the water available to the
plants through their roots, along with atmospheric condi-
tions (Rodríguez-Iturbe and Porporato, 2007; Seneviratne et
al., 2010; Volk et al., 2000). Finally, soil moisture regulates
surface water fluxes including infiltration and surface runoff
generation (Salvucci, 1993; Salvucci and Entekhabi, 1994;
Sun et al., 2011). Therefore, there is a need to characterize
soil moisture at spatial scales relevant to the representation of
land surface and mesoscale processes in the atmosphere. This
can potentially improve representation of evapotranspiration,
runoff and precipitation in hydrologic and weather prediction
models and result in improved predictive skills (Gedney and
Cox, 2003). In addition, knowledge of soil moisture at fine
spatial scales is necessary to improve farming practices and
optimize irrigation scheduling.

Soil moisture spatial variability is regulated by several fac-
tors including but not limited to precipitation, soil texture,
surface vegetation and topography. A combination of these
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factors results in high spatial heterogeneity for soil moisture
(Blöschl and Sivapalan, 1995; Famiglietti et al., 2008; Man-
freda et al., 2007; Peng et al., 2017; Western and Blöschl,
1999).

Current global soil moisture estimates are available at
coarse spatial scales (between 9 and 40 km), which limits
their suitability for applications such as evapotranspiration
modeling, particularly in regions with high atmospheric con-
vection as well as farm management. Therefore, several ap-
proaches have been introduced to downscale soil moisture
retrievals at finer resolution ( ∼ 1 km) (Hatfield, 2001; Mas-
caro et al., 2011; Merlin et al., 2006, 2008c; Peng et al., 2017;
Piles et al., 2011; Srivastava et al., 2013). Here, our objec-
tive is to generate a global downscaling product using Soil
Moisture Active Passive (SMAP) measurements (Chan et
al., 2016; Colliander et al., 2017b; Entekhabi et al., 2010).

Soil moisture downscaling can be conducted through dif-
ferent strategies. The first one is to use the synergy of active
and passive observations to take advantage of highly accurate
but coarse-resolution passive observations and active mea-
surements available at higher spatial resolution but not as di-
rectly related to soil moisture as passive microwave measure-
ments (Das et al., 2011; Jagdhuber et al., 2015, 2016; Leroux
et al., 2016; Montzka et al., 2016; Njoku et al., 2002; Piles et
al., 2009; Wu et al., 2017). However, due to the failure of the
SMAP active instrument in July 2015, these approaches are
not directly applicable to SMAP.

Another approach to downscaling is to use ancillary data
in combination with coarse-scale soil moisture estimates to
describe the spatial heterogeneity of soil moisture. Several
studies have used this approach to develop soil moisture at
fine spatial scales (Chakrabarti et al., 2016, 2017; Mascaro
et al., 2011; Piles et al., 2011, 2014; Srivastava et al., 2013;
Verhoest et al., 2015). However, there are limitations in these
techniques. Some of them use a linear or nonlinear relation-
ship (i.e., a projection) to define the impact of spatial hetero-
geneity using ancillary data, typically in combination with
an energy balance model to relate surface temperature and
soil moisture (Colliander et al., 2017a; Merlin et al., 2005,
2008c, a, b). A major issue is that surface temperature at
finer spatial scales from satellites cannot be estimated un-
der cloudy conditions. Moreover, surface temperature can-
not be used as a signature of soil moisture in energy-limited
conditions. The other group of downscaling methods uses
complex and computationally intensive disaggregation algo-
rithms that are typically unsuitable for global applications.
Another group of methods uses physical land surface models
at fine spatial scales as information useful for downscaling,
which adds significant uncertainty to the downscaling due to
the errors of the model parameter estimates (Ines et al., 2013;
Merlin et al., 2006; Roerink et al., 2000; Shin and Mohanty,
2013). Merlin et al. (2009, 2013) also developed a sequen-
tial technique to use satellite observations at different scales
and sequentially downscale soil moisture observations from a
40 km scale to 1 km scale and then 100 m. Peng et al. (2017)

provide a more detailed review of the current status of soil
moisture downscaling algorithms and their advantages and
disadvantages.

Our approach in this study is to use neural networks (NNs)
to develop a downscaling algorithm for SMAP soil mois-
ture estimates at the global scale. The capability of NNs
in learning complex relationships between inputs and target
data as well as their quick run time after training are among
the reasons for their popularity in Earth science and remote
sensing problems. In recent years, NNs have been used to
develop soil moisture retrieval algorithms from either pas-
sive or active instruments or a combination of both (Aires et
al., 2012; Alemohammad et al., 2017a; Jiménez et al., 2013;
Kolassa et al., 2013, 2016, 2017, 2018; Rodríguez-Fernández
et al., 2017, 2015). They have also been used to retrieve sur-
face turbulent fluxes from remote sensing observations (Ale-
mohammad et al., 2017b; Jiménez et al., 2009).

Our final product is soil moisture estimates at 2.25 km spa-
tial resolution with full global coverage every 2–3 days as
dictated by the SMAP orbit from April 2015 until the end
of March 2017 (the first 2 years of the SMAP mission). The
2.25 km spatial resolution is chosen since we use SMAP 36
and 9 km (1/4 of 36 km) soil moisture products for training
and developing the scaling relationship. This relationship is
used to estimate soil moisture at the finer 2.25 km resolu-
tion, which is 1/4 of 9 km. We explicitly emphasize that we
assume that the scaling between 36 and 9 km is similar to be-
tween 9 and 2.25 km. Unfortunately, there is no current way
to systematically test a potential scale dependence of such
scaling, but the systematic comparisons with observations
are used as an indirect validation of this assumption. More-
over, we use ancillary data that are available at the global
scale at all times (monthly Normalized Differenced Vegeta-
tion Index, NDVI, and topographic index) to mitigate issues
with current downscaling algorithms.

2 Datasets

In order to perform the downscaling algorithm, we use three
remote-sensing-based observations: (1) SMAP-estimated
coarse-resolution soil moisture (Sect. 2.1), (2) Normalized
Difference Vegetation Index (NDVI) as a vegetation index
that is strongly correlated with soil moisture spatial patterns
(Sect. 2.2) and (3) a topographic index to account for the lo-
cation of water in the landscape (Sect. 2.3).

These data are provided on different spatial grids and are
reprojected to a common grid for our analysis (Sect. 3.1).
Moreover, in situ soil moisture data that are used for evalua-
tion are introduced in Sect. 2.4.

2.1 SMAP soil moisture

The SMAP satellite estimates surface soil moisture (within
the top 5 cm of the soil) across the globe with a 2–3-day re-
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peat time (Entekhabi et al., 2010). SMAP uses a passive L-
band microwave radiometer (1.4 GHz), which is known to be
sensitive to surface soil moisture and transparent to clouds
and atmospheric moisture. Brightness temperature observa-
tions from SMAP are used together with ancillary data on
vegetation conditions and surface temperature to estimate the
soil dielectric constant from a zeroth-order radiative trans-
fer model, commonly referred to as the τ -ω model (Jackson,
1993; Jackson and Schmugge, 1991; Kurum et al., 2011). Fi-
nally, soil dielectric constant estimates are converted to vol-
umetric soil moisture estimates using soil texture data (Chan
et al., 2016; O’Neill et al., 2015). Measurements from SMAP
are available from April 2015 to present.

In this study, we use two SMAP Level 3 (L3) passive
soil moisture products. The first is the version 4.0 SPL3SMP
product, which estimates soil moisture on the 36 km Equal-
Area Scalable Earth Grid (EASE-grid 2.0) (O’Neill et
al., 2016b). This product provides soil moisture estimates for
both the morning (06:00) and evening (18:00) overpasses of
the satellite; however, we only use the morning overpasses
in this study since observation errors are minimized due to
the Faraday rotation and soil and canopy temperatures are in
equilibrium in the morning. The second is the version 1.0
SPL3SMP_E product, which estimates soil moisture with
an enhanced spatial resolution posted on 9 km EASE-grid
2.0 (O’Neill et al., 2016a). Both of the products use the
same brightness temperature observations from the SMAP
radiometer; however, in the enhanced product, spatial res-
olution is enhanced using the Backus–Gilbert interpolation
technique (Chan et al., 2017; Chaubell et al., 2016). While
the SPL3SMP_E product is posted on a 9 km EASE 2.0 grid,
its native resolution is coarser (∼ 33 km). Chan et al. (2017)
provide a detailed explanation of how the native resolution
and grid spacing of this product are different. Both products
are downloaded from the National Snow and Ice Data Center
(NSIDC) at https://nsidc.org/data/smap/smap-data.html (last
access: 1 July 2017).

To be consistent with the SMAP grid, we reproject our
ancillary data to EASE-grid 2.0 at the respective spatial res-
olutions. Moreover, our final downscaled soil moisture es-
timates are at 2.25 km spatial resolution on the EASE-grid
2.0, which is nested within the 9 and 36 km grids of SMAP
L3 soil moisture estimates (Sect. 3.1).

2.2 MODIS NDVI

Plants’ photosynthesis and subsequently vegetation green-
ness are regulated by the moisture available to plants through
their roots, as well as atmospheric conditions (Béziat et
al., 2013; Kool et al., 2014; Wang et al., 2014). In turn,
vegetation modifies its soil moisture environment through
changes in the partitioning of evapotranspiration and through
precipitation interception (Coenders-Gerrits et al., 2013;
Markewitz et al., 2010). Therefore, surface vegetation cover
can be a proxy for the spatial heterogeneity of soil mois-

ture. Vegetation greenness indices such as NDVI are esti-
mated by observations at red and near-infrared frequencies
and have relatively high spatial resolution. In this study,
we use monthly mean values of NDVI from the MODer-
ate resolution Imaging Spectroradiometer (MODIS) instru-
ment on board the Terra satellite. We use version 006 of
the MYD13A3 product that provides vegetation indices on
a 1 km spatial resolution at the global scale (Didan, 2015).

MODIS estimates are provided on a sinusoidal grid, and
due to its high resolution, data are divided into 10◦

× 10◦

tiles. In order to reproject these data to SMAP EASE-grid
2.0, we used two open-source libraries in Python. First, the
pyModis library was used to mosaic all the tiles together and
generate one global map for each measurement. Next, the
GDAL library was used to reproject MODIS estimates from
its original 1 km sinusoidal grid to the EASE-grid 2.0s.

2.3 Topographic index

The topographic index (TI) or topographic wetness index is a
measure of the soil’s saturation tendency given the upstream
drainage area and the slope of the local outflow (Marthews et
al., 2015). This index is a good proxy for the heterogeneity
of soil moisture at the watershed scale and thus could be ex-
pected to provide useful information on landscape moisture
organization. Here, we use the TI at 15 arcsec spatial resolu-
tion developed by Marthews et al. (2015). We upscaled the
TI values to the EASE-grid 2.0 at 36, 9 and 2.25 km to be
used as ancillary data.

2.4 International Soil Moisture Network (ISMN)

In situ soil moisture observations from a set of local net-
works are provided through the ISMN and are used to inde-
pendently evaluate the performance of our downscaling al-
gorithm. ISMN collects and standardizes soil moisture ob-
servations from several networks around the globe (Dorigo
et al., 2011, 2013). The spatial density of probes and their
measurement depth varies across different networks. In this
study, we only use data from networks that have measure-
ments at a depth of 5 cm below the surface (the nominal
penetration depth of SMAP) during the first 2 years of the
SMAP mission. Moreover, we only keep stations that have at
least 20 measurements collocated coincidently in time with
SMAP observations which are 06:00 local time. As a result,
we only use data from the following 10 networks: FMI (8 sta-
tions), iRON (4 stations), REMEDHUS (20 stations), RSMN
(19 stations), SCAN (159 stations), SMOSMANIA (17 sta-
tions), SNOTEL (344 stations), SOILSCAPE (10 stations),
TERENO (5 stations) and USCRN (98 stations) (Albergel et
al., 2008; Bell et al., 2013; Calvet et al., 2007; Moghaddam
et al., 2010, 2016; Zacharias et al., 2011). Figure S6 in the
Supplement shows the spatial distribution of these stations.
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3 Methodology

Our downscaling algorithm is based on an NN approach that
uses the two soil moisture estimates from SMAP at 36 and
9 km for training, and then retrieves soil moisture at 2.25 km
spatial resolution using the 9 km estimates from SMAP. The
NN relates the coarse-scale soil moisture and NDVI esti-
mates as well as the fine-scale NDVI estimates as input to
the fine-scale soil moisture estimates as output. To do so, we
assume that the scaling relationship between 36 and 9 km soil
moisture estimates is the same as the scaling relationship be-
tween 9 and 2.25 km estimates. To the best of our knowledge,
this is the first time that the assumption of a similar scaling
relationship is used to downscale soil moisture, while it has
been shown that soil moisture has a fractal scaling property
across scales (Famiglietti et al., 2008). In the following the
spatial grid setup, data preprocessing and NN training are ex-
plained.

3.1 Spatial grids

SMAP observations are provided on the EASE-grid 2.0 at
different spatial resolutions. The advantage of this grid is the
possibility of having nested grids at different spatial reso-
lutions. In this case, SMAP’s original radiometer-only soil
moisture estimates are at 36 km resolution and the enhanced
estimates are at 9 km resolution, which is nested within the
36 km one. Since we use the relationship between the 36 and
9 km grids (1/4 of the original scale) to train our NN algo-
rithm, our final downscaled estimates also have a spatial res-
olution of 1/4 of the 9 km product, which is used as input
in the retrieval step. This results in a spatial resolution of
2.25 km on the EASE-grid 2.0. Figure 1 shows the setup of
grids used in the training and retrieval steps.

To the best of our knowledge, EASE-grid 2.0 at 2.25 km
has not been used in any other product before. Therefore,
we defined the grid using the same parameters as for 36 and
9 km (listed in Brodzik et al., 2012, 2014), other than the grid
spacing which is set to 2252.0138025365 m (equal to 1/4 of
the grid spacing for the 9 km grid).

Our NN algorithm estimates soil moisture at a given pixel
of the finer resolution grid (the hatched pixel on the black
grid in Fig. 1). To generate the coarse-scale soil moisture es-
timates that are used as input to the NN algorithm, we use a
moving window averaging at the coarser resolution grid (the
green pixel in Fig. 1) that is centered on the target pixel at the
finer grid. In the training step, this moving window is 45 km
(applied over the 36 km product) and in the retrieval step, the
moving window is 11.25 km (applied over the 9 km product).
All the inputs to the algorithm are averaged at the scale of
the moving window from the coarse-resolution grid using an
area-weighted averaging. The only disadvantage of the mov-
ing window technique is that we cannot retrieve soil moisture
at the finer scale near coastal regions or places where SMAP
does not provide estimates of soil moisture (such as urban

Figure 1. Two levels of spatial grids used for training and retrieval
steps in the NN algorithm. While both steps have similar grid struc-
tures, the spatial resolutions are different as listed here.

areas, ice covered regions and frozen soil conditions). While
this is a limitation of our approach, its impact on the spatial
coverage of our downscaled soil moisture estimates is very
limited geographically. This limitation can potentially be im-
proved by incorporating an extrapolation algorithm that uses
NDVI to estimate soil moisture in coastal pixels (Aires et
al., 2017). Moreover, we used the static waterbodies’ mask
from the SMAP 9 km soil moisture product and masked out
all pixels that have a water fraction of more than 10 %. The
reason is that a high water fraction impacts brightness tem-
perature observations and results in a biased estimate of soil
moisture. We also observed higher discrepancies between the
SMAP 36 and 9 km soil moisture estimates in regions with a
high water fraction (not shown here).

3.2 Neural network setup

Our retrieval algorithm is a statistical approach based on
NNs. NNs use a set of training data to learn the relationship
between inputs and outputs without explicitly modeling the
physical relationship between them. This is a powerful statis-
tical approach and has been shown to be able to approximate
any continuous function (Cybenko, 1989). NNs consist of a
set of layers and neurons in each layer that mimic the neu-
ral system in humans’ brains. Each neuron has a weight and
bias corresponding to the neurons from its previous layer.
The output of a neuron is a linear summation of the weighted
inputs plus the bias that goes through an activation function.
In each multi-layered perceptron (MLP) NN (Rumelhart et
al., 1985), there is an input layer, an output layer and one or
more hidden layers in between. The number of neurons in the
input layer is equal to the number of inputs provided, and the
number of neurons in the output layer is equal to the number
of outputs given to the NN during training.

The right choice of the number of neurons in the hidden
layer and number of hidden layers depends on the complexity
of the relationship between inputs and outputs. While having
more hidden layers and neurons can potentially increase esti-
mation accuracy, it might result in overfitting to training data.
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This means that the NN has lower accuracy when applied to
other independent data. To avoid overfitting, we use the sim-
plest network (i.e., minimum of hidden layers and neurons)
that has an acceptable estimation accuracy. Moreover, we use
an extensive and representative set of data for training that
covers the full range of soil moisture dynamics across differ-
ent climates and surface conditions. Furthermore, we test the
generalization ability of the NN in an independent dataset.

We use the first 2 years of data from SMAP beginning on
1 April 2015 until 31 March 2017. For training data, we sam-
ple SMAP soil moisture estimates every 10 days at the global
scale. This results in 46.3 million data points after removing
pixels with a high percentage of waterbodies. For validation,
we sample the SMAP data every 5 days with a 1-day lag
with respect to the training data at the global scale; therefore,
training and validation samples are mutually exclusive. This
results in 92 million data points after removing pixels with a
high percentage of waterbodies.

During training the weights and biases of each neuron
are estimated iteratively by minimizing a mean squared er-
ror cost function using a gradient descent algorithm with
back propagation (Hagan and Menhaj, 1994; Rumelhart et
al., 1985). For this purpose, training data are divided into
three categories of training (60 %), validation (20 %) and
testing (20 %). After each iteration on the training category,
the validation data are used to check for overfitting and test
data are used to check convergence. When changes in the
cost function are smaller than a threshold, training stops, and
weights and biases that resulted in the best performance are
selected as the parameters of the network. The validation data
used here should not be mistaken with the independent val-
idation dataset sampled mutually exclusive to the training
dataset. Throughout the paper, the term “validation data” will
be used to refer to the dataset sampled mutually exclusive to
the training data (explained in the previous paragraph) and
to evaluate the performance of the NN training in terms of
overfitting.

We trained a set of networks with a number of hidden lay-
ers between 1 and 5 and a number of neurons in each hidden
layer between 1 and 15. After evaluating their performance,
we selected the network with one hidden layer and five neu-
rons, which has a good accuracy, while adding more hidden
layers or neurons did not change the performance. We use the
hyperbolic tangent sigmoid function as the activation func-
tion for the hidden layer, a standard practice, and a linear
function as the activation function for the output layer.

3.3 Inputs and downscaling schemes

We develop four different schemes with an increasing num-
ber of ancillary inputs for downscaling SMAP soil moisture
estimates. In this section, we introduce each of them, and
we compare their performance in Sect. 4. At the end, only
one scheme was selected to provide the final downscaled soil
moisture estimates.

Scheme R1 has the three following inputs: soil moisture
estimates from SMAP on the moving window grid at the
coarse-scale resolution (45 km for training and 11.25 km for
retrieval), mean NDVI at the coarse-scale moving window
and NDVI in the target pixel at the fine-scale grid (9 km for
training and 2.25 km for retrieval).

Scheme R2 has all the inputs in scheme R1 plus standard
deviation of NDVI at the fine-scale pixels within the mov-
ing window. For example, in the training step there are 25
9 km pixels within the 45 km moving window. We estimate
the standard deviation of those, and input these into the net-
work. This estimate provides a proxy of the heterogeneity
within the coarse-scale grid.

Scheme R3 has all the inputs in scheme R1 plus TI at the
moving window of the coarse scale and TI in the target pixel
at the fine-scale grid.

Scheme R4 has all the inputs from schemes R1–R3. Ta-
ble 1 lists all the four schemes and their respective inputs.
For each scheme, the 9 km SMAP soil moisture estimates
are used as the NN target data.

4 Results

In this section, we first present the results of NN training
and evaluation of the downscaling from 36 to 9 km. We only
present the results from Scheme R1, since all four schemes
have similar performances. Next, we apply the downscaling
scheme to the entire 2-year SMAP data record and generate
soil moisture at 2.25 km spatial resolution. Finally, we eval-
uate the accuracy of downscaled soil moisture from all the
four schemes using in situ soil moisture estimates from the
ISMN dataset.

4.1 Evaluating NN training

To evaluate the success of the NN training, we compute
the correlation coefficient (R2) and the unbiased root mean
square difference (ubRMSD) between the NN estimates and
the target data for the training and validation data. We com-
pare the metrics aggregated across all the data and spatially
at each pixel.

Figure 2 shows the density scatterplot of 9 km NN esti-
mates versus target 9 km soil moisture data in the training
and validation datasets. Both datasets have similar ubRMSD
and R2, which shows that the NN is able to generalize be-
yond the training data. An R2 value of ∼ 0.98 is an almost
perfect correlation between the target and estimates, and in-
dicates that the NN setup with the inputs provided is capable
of learning the relationship between coarse- and fine-scale
soil moisture.

In order to compare the performance of NNs with other
techniques, we present similar results for two other ap-
proaches. The first approach assumes a uniform distribution
of soil moisture (i.e., no heterogeneity) within each 36 km
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Table 1. Inputs used in each of the downscaling schemes. SM denotes soil moisture.

No. Usage Input 1 Input 2 Input 3 Input 4 Input 5 Input 6

R1
Training SM at 45 km NDVI at 45 km NDVI at 9 km for – – –

target pixel

Retrieval SM at 11.25 km NDVI at 11.25 km NDVI at 2.25 km for – – –
target pixel

R2

Training SM at 45 km NDVI at 45 km NDVI at 9 km for σNDVI at 45 km for – –
target pixel all pixels at 9 km

Retrieval SM at 11.25 km NDVI at 11.25 km NDVI at 2.25 km for σNDVI at 11.25 km for – –
target pixel all pixels at 2.25 km

R3
Training SM at 45 km NDVI at 45 km NDVI at 9 km for TI at 45 km TI at 9 km for –

target pixel target pixel

Retrieval SM at 11.25 km NDVI at 11.25 km NDVI at 2.25 km for TI at 11.25 km TI at 2.25 km for –
target pixel target pixel

R4

Training SM at 45 km NDVI at 45 km NDVI at 9 km for TI at 45 km TI at 9 km for σNDVI at 45 km for
target pixel target pixel all pixels at 9 km

Retrieval SM at 11.25 km NDVI at 11.25 km NDVI at 2.25 km for TI at 11.25 km TI at 2.25 km for σNDVI at 11.25 km for
target pixel target pixel all pixels at 2.25 km

Figure 2. Density scatterplot of NN estimates versus target data for training (a) and validation (b) datasets. Color shades show the number
of samples in each part of the scatterplot.

grid pixel. This means that all the 9 km pixels that fall within
a 36 km grid pixel are attributed the same soil moisture value
as the 36 km one (i.e., no downscaling). The second approach
is to use a linear interpolation (i.e., a crude downscaling).
This is used as a reference to a simpler approach than the
NN. In this approach, soil moisture values on the 36 km grid
are assumed to be at the center point of the pixel. Then using
a linear interpolation, soil moisture is estimated at the center
point of each 9 km grid pixel. We implement the interpola-
tion at the global scale for each SMAP observation. Figure 3
shows the density scatterplots for these two approaches. As
the scatterplots and performance metrics show, the NN algo-
rithm has higher correlation and lower ubRMSD compared
to both no heterogeneity and interpolation approaches. As
expected, the homogeneous algorithm has the worst perfor-
mance.

To further evaluate the performance of the NN downscal-
ing algorithm, we evaluate the correlation between target soil

moisture and NN estimates at 9 km in each pixel (Fig. 4).
These estimates are based on the validation dataset, and on
average 50 data points are used to calculate the correlations
(in some snowy regions like the Himalaya Mountains, as few
as 20 data points were used, the minimum number of sam-
ples set to estimate the correlation in this evaluation). Cor-
relations range between a minimum of 0.6 in dense tropical
forests (where NDVI saturates and limited spatial inhomo-
geneity can be found) and ∼ 1 in most other parts of the
world, except in far northern regions where the correlation
is closer to 0.9. The smaller value of correlation in the trop-
ics is a result of the low seasonality and saturation effect of
NDVI in those regions; therefore NDVI does not provide use-
ful information for downscaling (Morton et al., 2014). These
regions have relatively high soil moisture and relatively low
variability in NDVI throughout the year. In addition, NDVI
and EVI (Enhanced Vegetation Index) tend to saturate at high
vegetation cover, so there is only limited variability in those
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Figure 3. Density scatterplots of uniform 9 km soil moisture estimate (a) and interpolated soil moisture at 9 km (b) vs. observed 9 km soil
moisture. Color shades show the number of samples in each part of the scatterplot.

Figure 4. Correlation coefficient (R2) between SMAP-observed soil moisture (SM) at 9 km and NN-downscaled soil moisture at 9 km. White
regions indicate no data.

regions. As a result, disaggregating soil moisture using NDVI
has a lower accuracy compared to other regions. Neverthe-
less, NDVI and EVI are the only global fine-scale vegetation
indices that can be used as ancillary data to describe the sub-
pixel heterogeneity of soil moisture, and both lack seasonal-
ity in dense tropical forests. Moreover, Figure S1 shows the
percentage difference between the NN retrieval and SMAP
estimates at 9 km. The largest differences are observed in
mountainous and coastal regions, where soil moisture varia-
tions are influenced by factors such as the terrain slope. How-
ever, inclusion of other ancillary data such as slope in other
downscaling schemes did not improve the bias, and schemes
R2–R4 have a similar performance both in terms of aggre-
gated R2 and ubRMSD and spatial patterns of correlation
between NN estimates and target soil moisture.

Moreover, Figs. S2–S5 show the spatial correlation maps
and percentage difference between SMAP estimates at 9 km
and the estimates from interpolation and no heterogeneity ap-

proaches. These figures show that both approaches have a
significantly higher bias with respect to the SMAP estimates
compared to the NN retrieval.

4.2 Downscaled soil moisture

Using the NN that was trained and evaluated in the previous
section, we then estimate soil moisture at 2.25 km EASE-
grid 2.0 resolution. For this, we use the SMAP 9 km observed
soil moisture as input together with ancillary data for each
scheme as described in Sect. 3.3.

Figure 5 shows the average global soil moisture at three
different spatial resolutions (36 and 9 km from SMAP obser-
vations, and 2.25 km downscaled from SMAP observations).
Overall, the spatial patterns are as expected, with some het-
erogeneity being added as the resolution increases. These
maps show that our downscaling algorithm preserves the
large-scale spatial patterns of soil moisture while disaggre-
gating it at local scales. Moreover, the latitudinal average
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Figure 5. Average soil moisture at 36 km (a), 9 km (b) and 2.25 km (c) between April 2015 and March 2017. The shaded plot on the right
side of each panel shows the mean and 1 standard deviation of soil moisture at each latitude.

plots (on the right side of each panel of Fig. 5) show that
at higher spatial resolutions there is more spatial heterogene-
ity. The latitudinal average for the 36 km product is much
smoother than the 2.25 km one.

Figure 6 shows a snapshot of soil moisture estimates from
the SMAP 36 km product, SMAP 9 km product and the
downscaled product at 2.25 km across western Africa from

18 October 2015, in order to further demonstrate the added
information of the downscaling algorithm. From left to right
in Fig. 6 with increasing spatial resolution, finer spatial pat-
terns are revealed, with finer structure, while respecting the
overall 9 km structures. We note that there is no random spa-
tial noise in the higher spatial resolution data, emphasizing
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Figure 6. Example of a snapshot of soil moisture estimates from SMAP at 36 km (a) and 9 km (b), and the downscaled estimates at 2.25 km (c)
in western Africa.

that the additional NN input (NDVI) is useful to preserve the
spatial connectivity of different high-resolution pixels.

4.3 Large-scale evaluation of downscaled soil moisture

In this section, we analyze large-scale patterns of the down-
scaled soil moisture estimates at 2.25 km spatial resolution.
Our first analysis is the spatial heterogeneity of the down-
scaled soil moisture. We calculate the coefficient of varia-
tion (CV), which is the spatial standard deviation divided by
the mean, of the 16 2.25 km pixels within each 9 km pixel
at each time. Figure 7b shows the mean CV at each pixel
for the downscaled soil moisture. For comparison, we also
calculate the CV for the 9 km soil moisture estimates from
SMAP at the 36 km grid (Fig. 7a), and the CV for the 2.25 km
downscaled estimates at the 36 km grid (Fig. 7c). Panels
in Fig. 7 have a different range of CV, which is expected
given the difference in their spatial scales, but inset proba-
bility density functions (PDFs) have similar scales for better
comparison. These plots reveal similar spatial patterns across
different scales, yet with finer and contiguous structures at
higher resolution. This means that in regions that have high
spatial heterogeneity in the 9 km SMAP estimates, we also
observe high heterogeneity in the 2.25 km downscaled soil
moisture estimates. Meanwhile, the 2.25 km estimates have
higher variation (i.e., heterogeneity) at the 36 km grid scale
compared to the 9 km product. This indicates that the 2.25 km
product is not just a smoothed version of the 9 km product but
can add spatial variability not captured by the coarser 9 km
pixels. Therefore, our NN algorithm is appropriately explain-
ing the spatial variability of soil moisture using NDVI as an-
cillary data. The other downscaling schemes (R2–R4) exhibit
similar spatial patterns for the CV. This is an indication that
the other inputs to these schemes do not provide any extra
information on the heterogeneity of soil moisture at the finer
spatial scale.

Our second analysis evaluates the conservation of the wa-
ter balance within each coarse-scale pixel. Since we are dis-
aggregating soil moisture from the 9 km grid to the 2.25 km
grid, the downscaling algorithm may not preserve the mean
soil moisture within each coarse-scale pixel (water balance).
Figure 8 shows the spatial map of the percentage average
difference (with respect to their mean) between the mean
soil moisture from the 16 2.25 km pixels within each 9 km
pixel and soil moisture estimates at 9 km from SMAP. The
inset PDF also shows the probability distribution of these dif-
ferences. On average, there is a positive bias of ∼ 1.5 % in
the differences, and the downscaled soil moisture estimates
at 2.25 km are slightly positively biased, i.e., more humid.
However, the differences are small (mostly less than 3 % in
absolute value) and within the SMAP retrieval mission ac-
curacy (< 0.04 m3 m−3). This analysis also reveals that our
downscaling algorithm is robust in preserving the water bal-
ance within each coarse-scale pixel and still within the orig-
inal requirements of the SMAP mission.

4.4 Comparison against ISMN data

In this section, we evaluate downscaled soil moisture esti-
mates against the ISMN dataset. We calculate R2, anomaly
R2 and unbiased root mean square error (ubRMSE) for each
of the four downscaling schemes as well as SMAP estimates
at 36 and 9 km. Anomalies are calculated based on a 30-day
moving average window. We use stations from 10 networks
within the ISMN dataset. For networks that have more than
one station within each SMAP pixel, we average the stations
within the 2.25 km pixels and then calculate the metrics for
each of the 36, 9 and 2.25 km products. Figure 9 shows the
average of each metric across stations for different networks
and the average among all of the networks.

In general, all four schemes have quite a similar perfor-
mance within each network and across all networks. During
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Figure 7. Coefficient of variations of (a) 9 km observed soil moisture within each 36 km grid pixel, (b) 2.25 km downscaled soil moisture
within each 9 km grid pixel and (c) 2.25 km downscaled soil moisture within each 36 km grid pixel.

the NN training, all four schemes had a similar performance.
In some cases, scheme R1 had a slightly better performance
(i.e., ∼ 2 % higherR2). For these reasons, and to reduce com-
plexity of the downscaling algorithm, our final downscaling
algorithm is scheme R1.

Our downscaling scheme always has equal or better per-
formance compared to the 9 km product across individual

networks. Since the 9 km product is the input to our down-
scaling, this shows that in terms of temporal correlation and
ubRMSE, our downscaling algorithm either improves the
9 km product or is similar in terms of accuracy. In compari-
son to the 36 km product, our downscaling algorithm’s per-
formance follows the 9 km product performance. At stations
where the 9 km product has a better performance compared
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Figure 8. Percentage difference with respect to mean of average 2.25 km soil moisture estimates at 9 km and observed 9 km soil moisture.

Figure 9. R2 (a), anomaly R2 (b) and ubRMSE (c) of each of the downscaling schemes and SMAP 9 km and 36 km products across 10
different networks of ISMN. Error bars show 1 standard deviation of each metric around the mean value. Average values across all sites are
presented on the right of each panel.
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to the 36 km product (e.g., ubRMSE in iRON), the 2.25 km
product also has a better performance compared to the 36 km
product, and vice versa. The main added value of the 2.25 km
product is its enhanced spatial resolution that provides a mea-
sure of soil moisture heterogeneity at a finer spatial resolu-
tion using satellite observations while having an acceptable
temporal accuracy.

5 Conclusions

In this study, we have developed a statistical disaggrega-
tion algorithm using neural networks to downscale soil mois-
ture observations from SMAP to a spatial resolution of
2.25 km. We use the two level 3 soil moisture estimates
from SMAP at 36 and 9 km spatial resolutions to train our
downscaling algorithm. Assuming the relationship is con-
sistent between scales, we apply the downscaling algorithm
to 9 km soil moisture estimates from SMAP and disaggre-
gate those to 2.25 km. Our downscaling algorithm only uses
mean monthly NDVI estimates as ancillary data at both the
coarse and fine spatial scales to estimate the heterogeneity of
soil moisture at the subpixel level. Our investigation shows
that the topographic index and variability of NDVI within
the coarse-scale pixel do not provide additional useful infor-
mation on the spatial heterogeneity of soil moisture for the
downscaling using our proposed NN technique and are thus
omitted in the final product. This is the first study to estimate
soil moisture at the global scale at a very fine spatial res-
olution (∼ 2 km). This new product can be used in a range
of other studies and applications including land surface–
atmosphere interaction modeling, evapotranspiration model-
ing and agricultural management. However, in some parts of
the world where farm sizes are smaller than the resolution
of this product, further disaggregation of soil moisture esti-
mates is needed. Moreover, we will extend these estimates to
near-real time as long as SMAP soil moisture estimates are
available.

Our evaluation shows that the performance of the down-
scaled soil moisture estimates is equal to or better than that
of the SMAP 9 km estimates in terms of temporal correlation,
anomaly correlation and ubRMSE when compared to in situ
soil moisture estimates from ISMN. Moreover, averaging the
estimates at 2.25 km within each 9 km pixel shows that our
downscaling algorithm has high accuracy in preserving the
water balance (less than 5 % error, within the SMAP mission
requirements).

In this study, we use the relative value of NDVI (in a given
pixel with respect to the neighboring pixels) as auxiliary in-
formation to predict the spatial variability of soil moisture in
each coarse-scale pixel. While the relationship between soil
moisture and NDVI at phenological timescales may not be
valid at the temporal scale of SMAP observations (a couple
of days), our assumption builds on the relative value of NDVI
within a small region and not the absolute value. Therefore, it

is reasonable to use NDVI as a predictor in this case. Use of
NDVI as an ancillary measurement to disaggregate soil mois-
ture builds on the assumption that there is moderate vegeta-
tion cover in the pixel of interest. Therefore, this lowers the
quality of the downscaling algorithm in bare soil or sparsely
vegetated regions. Figure 8 shows a dry bias in arid regions
which is an indication of a lack of an NDVI–soil moisture
relationship. Moreover, NDVI estimates tend to saturate in
highly dense vegetated regions such as in tropical forests,
which results in the limited ability of the downscaling algo-
rithm to resolve the heterogeneity of soil moisture in those
regions.

This study shows the potential of using neural networks
with a large number of training data to develop a downscal-
ing algorithm for soil moisture. Data generated using this al-
gorithm can be used to provide an improved understanding of
the dynamics of soil moisture and land surface–atmosphere
interactions at the global scale.
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