33 research outputs found

    Polycyclic Aromatic Hydrocarbons in Thai and Myanmar Rice: Concentrations, Distribution and Health Concerns

    Get PDF
    In the present study, we studied the concentrations and proportions. We identified the potential sources and health risks of 12 probably carcinogenic polycyclic aromatic hydrocarbons (PAHs) in rice grain from 31 sites in Thailand and Myanmar. The findings showed that PAH concentrations in rice grain samples from Thailand and Myanmar were in the range of 0.09 to 37.15 ng.g-1 with an average value of 18.22 ± 11.76 ng.g-1 and 0.07 to 150.73 ng.g-1 with an average value of 34.70 ± 40.57 ng.g-1, respectively. The majority group of PAHs in the rice grain samples from Thailand were the five-ring PAHs (78%), followed by four-rings (12%) and three-ring PAHs (9.5%), respectively, while for Myanmar was the five-ring PAHs were the majority (64.02%), followed by six-rings (15.22%) and four-ring PAHs (13.58%), respectively. The diagnostic ratio analysis suggested that pyrogenic origin is a major source of PAHs, and principal component analysis (PCA) identifies the incomplete combustion of fuel as likely the primary source of emissions source of PAHs contamination in rice grain samples. The total values of incremental lifetime cancer risk (ILCR) of PAH content of rice grain for children and adults were 1.95 × 10-8 and 1.44 × 10-8, respectively, for Thailand and 1.83×10-7 and 1.35×10-7 for Myanmar, which showed that the incremental lifetime cancer risk from rice grain was lower than the baseline set is considered to be safe levels

    Estimation of Gas-Particle Partitioning Coefficients (K-p) of Carcinogenic Polycyclic Aromatic Hydrocarbons in Carbonaceous Aerosols Collected at Chiang-Mai, Bangkok and Hat-Yai, Thailand

    No full text
    To assess environmental contamination with carcinogens, carbonaceous compounds, water-soluble ionic species and trace gaseous species were identified and quantified every three hours for three days at three different atmospheric layers at the heart of Chiang-Mai, Bangkok and Hat-Yai from December 2006 to February 2007. A DRI Model 2001 Thermal/Optical Carbon Analyzer with the IMPROVE thermal/optical reflectance (TOR) protocol was used to quantify the organic carbon (OC) and elemental carbon (EC) contents in PM10. Diurnal and vertical variability was also carefully investigated. In general, OC and EC mass concentration showed the highest values at the monitoring period of 21.00-00.00 as consequences of human activities at night bazaar coupled with reduction of mixing layer, decreased wind speed and termination of photolysis at nighttime. Morning peaks of carbonaceous compounds were observed during the sampling period of 06:00-09:00, emphasizing the main contribution of traffic emission in the three cities. The estimation of incremental lifetime particulate matter exposure (ILPE) raises concern of high risk of carbonaceous accumulation over workers and residents living close to the observatory sites. The average values of incremental lifetime particulate matter exposure (ILPE) of total carbon at Baiyoke Suit Hotel and Baiyoke Sky Hotel are approximately ten times higher than those air samples collected at Prince of Songkla University Hat-Yai campus corpse incinerator and fish-can manufacturing factory but only slightly higher than those of rice straw burning in Songkla province. This indicates a high risk of developing lung cancer and other respiratory diseases across workers and residents living in high buildings located in Pratunam area. Using knowledge of carbonaceous fractions in PM10, one can estimate the gas-particle partitioning of polycyclic aromatic hydrocarbons (PAHs). Dachs-Eisenreich model highlights the crucial role of adsorption in gas-particle partitioning of low molecular weight PAHs, whereas both absorption and adsorption tend to account for gas-particle partitioning of high molecular weight PAHs in urban residential zones of Thailand. Interestingly, the absorption mode alone plays a minor role in gas-particle partitioning of PAHs in Chiang-Mai, Bangkok and Hat-Yai.</p

    Using Polycyclic Aromatic Hydrocarbons (PAHs) as a chemical proxy to indicate Tsunami 2004 backwash in Khao Lak coastal area, Thailand

    No full text
    In this study, we attempted to use PAHs as a chemical proxy to trace the transport of land-derived materials caused by the tsunami backwash to better understand how it may have affected the distribution of sedimentary deposition throughout the seabed of Khao Lak coastal areas. By analyzing the compositions of sedimentary PAHs in combination with application of the multivariate descriptive statistical techniques, PAHs were proven to be a promising chemical proxy to indicate the tsunami backwash in the study area. Their spatial distribution could indicate that the tsunami backwash plays an important role in transporting anthropogenic PAHs to the nearby coastal area as far as approximately 25 km from the shoreline. In addition, the results from diagnostic PAH isomer ratios suggested that road paving asphalt, originated from heavy erosion by the tsunami wave in front of Pakarang Cape, was among the identified sources of PAHs. Principle Component Analysis (PCA) results provided 2 estimated land-derived sources of PAHs, which were the road dust and oil burning sources. These estimated signature sources clearly support our hypothesis that PAHs were transported from the potential sources on land and deposited into the near-shore seabed during tsunami backwash
    corecore