1,808 research outputs found

    Sub-gap spectroscopy of thermally excited quasiparticles in a Nb contacted carbon nanotube quantum dot

    Full text link
    We present electronic transport measurements of a single wall carbon nanotube quantum dot coupled to Nb superconducting contacts. For temperatures comparable to the superconducting gap peculiar transport features are observed inside the Coulomb blockade and superconducting energy gap regions. The observed temperature dependence can be explained in terms of sequential tunneling processes involving thermally excited quasiparticles. In particular, these new channels give rise to two unusual conductance peaks at zero bias in the vicinity of the charge degeneracy point and allow to determine the degeneracy of the ground states involved in transport. The measurements are in good agreement with model calculations.Comment: 5 pages, 4 figure

    Import of ADP/ATP carrier into mitochondria

    Get PDF
    We have identified the yeast homologue of Neurospora crassa MOM72, the mitochondrial import receptor for the ADP/ATP carrier (AAC), by functional studies and by cDNA sequencing. Mitochondria of a yeast mutant in which the gene for MOM72 was disrupted were impaired in specific binding and import of AAC. Unexpectedly, we found a residual, yet significant import of AAC into mitochondria lacking MOM72 that occurred via the receptor MOM19. We conclude that both MOM72 and MOM19 can direct AAC into mitochondria, albeit with different efficiency. Moreover, the precursor of MOM72 apparently does not require a positively charged sequence at the extreme amino terminus for targeting to mitochondria

    Biogenesis of mitochondrial porin

    Get PDF
    We review here the present knowledge about the pathway of import and assembly of porin into mitochondria and compare it to those of other mitochondrial proteins. Porin, like all outer mitochondrial membrane proteins studied so far is made as a precursor without a cleavble lsquosignalrsquo sequence; thus targeting information must reside in the mature sequence. At least part of this information appears to be located at the amino-terminal end of the molecule. Transport into mitochondria can occur post-translationally. In a first step, the porin precursor is specifically recognized on the mitochondrial surface by a protease sensitive receptor. In a second step, porin precursor inserts partially into the outer membrane. This step is mediated by a component of the import machinery common to the import pathways of precursor proteins destined for other mitochondrial subcompartments. Finally, porin is assembled to produce the functional oligomeric form of an integral membrane protein wich is characterized by its extreme protease resistance

    Origin of different deactivation of Pd/SnO<sub>2</sub> and Pd/GeO<sub>2</sub> catalysts in methanol dehydrogenation and reforming: A comparative study

    Get PDF
    Pd particles supported on SnO2 and GeO2 have been structurally investigated by X-ray diffraction, (High-Resolution) transmission and scanning electron microscopy after different reductive treatments to monitor the eventual formation of bimetallic phases and catalytically tested in methanol dehydrogenation/reforming. For both oxides this included a thin film sample with well-defined Pd particles and a powder catalyst prepared by incipient wetness impregnation. The hexagonal and the tetragonal polymorph were studied for powder GeO2. Pd2Ge formation was observed on all GeO2-supported catalysts, strongly depending on the specific sample used. Reduction of the thin film at 573 K resulted in full transformation into the bimetallic state. The partial solubility of hexagonal GeO2 in water and its thermal structural instability yielded Pd2Ge formation at 473 K, at the cost of a structurally inhomogeneous support and Ge metal formation at higher reduction temperatures. Pd on tetragonal GeO2 entered a state of strong metal–support interaction after reduction at 573–673 K, resulting in coalescing Pd2Ge particles on a sintered and re-crystallized support, apparently partially covering the bimetallic particles and decreasing the catalytic activity. Pd2Ge on amorphous thin film and hexagonal GeO2 converted methanol primarily via dehydrogenation to CO and H2. At 573 K, formation of Pd2Sn and also PdSn occurred on the Pd/SnO2 thin film. Pd3Sn2 (and to some extent Pd2Sn) were predominantly obtained on the respective powder catalyst. Strong deactivation with increasing reduction temperature was observed, likely not based on the classical strong metal–support interaction effect, but rather on a combination of missing active structural ensembles on Sn-enriched bimetallic phases and the formation of metallic ÎČ-Sn. Correlations to Pd and its bimetallics supported on ZnO, Ga2O3 and In2O3 were also discussed

    Mitochondrial precursor proteins are imported through a hydrophilic membrane environment

    Get PDF
    We have analyzed how translocation intermediates of imported mitochondrial precursor proteins, which span contact sites, interact with the mitochondrial membranes. F1-ATPase subunit ÎČ(F1ÎČ) was trapped at contact sites by importing it into Neurospora mitochondria in the presence of low levels of nucleoside triphosphates. This F1ÎČ translocation intermediate could be extracted from the membranes by treatment with protein denaturants such as alkaline pH or urea. By performing import at low temperatures, the ADP/ATP carrier was accumulated in contact sites of Neurospora mitochondria and cytochrome b2 in contact sites of yeast mitochondria. These translocation intermediates were also extractable from the membranes at alkaline pH. Thus, translocation of precursor proteins across mitochondrial membranes seems to occur through an environment which is accessible to aqueous perturbants. We propose that proteinaceous structures are essential components of a translocation apparatus present in contact sites

    Epidemiological trends in nosocomial candidemia in intensive care

    Get PDF
    BACKGROUND: Infection represents a frequent complication among patients in Intensive Care Units (ICUs) and mortality is high. In particular, the incidence of fungal infections, especially due to Candida spp., has been increasing during the last years. METHODS: In a retrospective study we studied the etiology of candidemia in critically ill patients over a five-year period (1999–2003) in the ICU of the San Martino University Hospital in Genoa, Italy. RESULTS: In total, 182 episodes of candidaemia were identified, with an average incidence of 2.22 episodes/10 000 patient-days/year (range 1.25–3.06 episodes). Incidence of candidemia increased during the study period from 1.25 in 1999 to 3.06/10 000 patient-days/year in 2003. Overall, 40% of the fungemia episodes (74/182) were due to C.albicans, followed by C. parapsilosis(23%), C.glabrata (15%), C.tropicalis (9%) and other species (13%). Candidemia due to non-albicans species increased and this was apparently correlated with an increasing use of azoles for prophylaxis or empirical treatment. CONCLUSION: The study demonstrates a shift in the species of Candida causing fungemia in a medical and surgical ICU population during a 5 year period. The knowledge of the local epidemiological trends in Candida species isolated in blood cultures is important to guide therapeutic choices
    • 

    corecore