13 research outputs found

    Phase separation in hydrogen-helium mixtures at Mbar pressures

    Full text link
    The properties of hydrogen-helium mixtures at Mbar pressures and intermediate temperatures (4000 to 10000 K) are calculated with first-principles molecular dynamics simulations. We determine the equation of state as a function of density, temperature, and composition and, using thermodynamic integration, we estimate the Gibbs free energy of mixing, thereby determining the temperature, at a given pressure, when helium becomes insoluble in dense metallic hydrogen. These results are directly relevant to models of the interior structure and evolution of Jovian planets. We find that the temperatures for the demixing of helium and hydrogen are sufficiently high to cross the planetary adiabat of Saturn at pressures around 5 Mbar; helium is partially miscible throughout a significant portion of the interior of Saturn, and to a lesser extent in Jupiter.Comment: 6 pages, 7 figures. Published in "Proceedings of the National Academy of Sciences USA

    The long-run behaviour of the terms of trade between primary commodities and manufactures : a panel data approach

    Get PDF
    This paper examines the Prebisch and Singer hypothesis using a panel of twenty-four commodity prices from 1900 to 2010. The modelling approach stems from the need to meet two key concerns: (i) the presence of cross-sectional dependence among commodity prices; and (ii) the identification of potential structural breaks. To address these concerns, the Hadri and Rao (Oxf Bull Econ Stat 70:245–269, 2008) test is employed. The findings suggest that all commodity prices exhibit a structural break whose location differs across series, and that support for the Prebisch and Singer hypothesis is mixed. Once the breaks are removed from the underlying series, the persistence of commodity price shocks is shorter than that obtained in other studies using alternative methodologies.info:eu-repo/semantics/publishedVersio

    Spontaneous spin polarization and charge localization in metal nanowires: the role of a geometric constriction

    Get PDF
    An idealized jellium model of conducting nanowires with a geometric constriction is investigated by density functional theory (DFT) in the local spin density (LSD) approximation. The results reveal a fascinating variety of spin and charge patterns arising in wires of sufficiently low (r(s) >= 15) average electron density, pinned at the indentation by an apparent attractive interaction with the constriction. The spin-resolved frequency-dependent conductivity shows a marked asymmetry in the two spin channels, reflecting the spontaneous spin polarization around the wire neck. The relevance of the computational results is discussed in relation to the so-called 0.7 anomaly found by experiments in the low-frequency conductivity of nanowires at near-breaking conditions (see 2008 J. Phys.: Condens Matter 20, special issue on the 0.7 anomaly). Although our mean-field approach cannot account for the intrinsic many-body effects underlying the 0.7 anomaly, it still provides a diagnostic tool to predict impending transitions in the electronic structure

    The Theory of Brown Dwarfs and Extrasolar Giant Planets

    Full text link
    Straddling the traditional realms of the planets and the stars, objects below the edge of the main sequence have such unique properties, and are being discovered in such quantities, that one can rightly claim that a new field at the interface of planetary science and and astronomy is being born. In this review, we explore the essential elements of the theory of brown dwarfs and giant planets, as well as of the new spectroscopic classes L and T. To this end, we describe their evolution, spectra, atmospheric compositions, chemistry, physics, and nuclear phases and explain the basic systematics of substellar-mass objects across three orders of magnitude in both mass and age and a factor of 30 in effective temperature. Moreover, we discuss the distinctive features of those extrasolar giant planets that are irradiated by a central primary, in particular their reflection spectra, albedos, and transits. Aspects of the latest theory of Jupiter and Saturn are also presented. Throughout, we highlight the effects of condensates, clouds, molecular abundances, and molecular/atomic opacities in brown dwarf and giant planet atmospheres and summarize the resulting spectral diagnostics. Where possible, the theory is put in its current observational context.Comment: 67 pages (including 36 figures), RMP RevTeX LaTeX, accepted for publication in the Reviews of Modern Physics. 30 figures are color. Most of the figures are in GIF format to reduce the overall size. The full version with figures can also be found at: http://jupiter.as.arizona.edu/~burrows/papers/rm

    Origins and characterization of CO and O<sub>3</sub> in the African upper troposphere

    No full text
    Between December 2005 and 2013, the In-service Aircraft for a Global Observing System (IAGOS) program produced almost daily in situ measurements of CO and O3 between Europe and southern Africa. IAGOS data combined with measurements from the Infrared Atmospheric Sounding Interferometer (IASI) instrument aboard the Metop-A satellite (2008–2013) are used to characterize meridional distributions and seasonality of CO and O3 in the African upper troposphere (UT). The FLEXPART particle dispersion model and the SOFT-IO model which combines the FLEXPART model with CO emission inventories are used to explore the sources and origins of the observed transects of CO and O3.We focus our analysis on two main seasons: December to March (DJFM) and June to October (JJASO). These seasons have been defined according to the position of Intertropical Convergence Zone (ITCZ), determined using in situ measurements from IAGOS. During both seasons, the UT CO meridional transects are characterized by maximum mixing ratios located 10∘ from the position of the ITCZ above the dry regions inside the hemisphere of the strongest Hadley cell (132 to 165 ppb at 0–5∘ N in DJFM and 128 to 149 ppb at 3–7∘ S in JJASO) and decreasing values southward and northward. The O3 meridional transects are characterized by mixing ratio minima of ∼42–54 ppb at the ITCZ (10–16∘ S in DJFM and 5–8∘ N in JJASO) framed by local maxima (∼53–71 ppb) coincident with the wind shear zones north and south of the ITCZ. O3 gradients are strongest in the hemisphere of the strongest Hadley cell. IASI UT O3 distributions in DJFM have revealed that the maxima are a part of a crescent-shaped O3 plume above the Atlantic Ocean around the Gulf of Guinea.CO emitted at the surface is transported towards the ITCZ by the trade winds and then convectively uplifted. Once in the upper troposphere, CO-enriched air masses are transported away from the ITCZ by the upper branches of the Hadley cells and accumulate within the zonal wind shear zones where the maximum CO mixing ratios are found. Anthropogenic and fires both contribute, by the same order of magnitude, to the CO budget of the African upper troposphere.Local fires have the highest contribution and drive the location of the observed UT CO maxima. Anthropogenic CO contribution is mostly from Africa during the entire year, with a low seasonal variability. There is also a large contribution from Asia in JJASO related to the fast convective uplift of polluted air masses in the Asian monsoon region which are further westward transported by the tropical easterly jet (TEJ) and the Asian monsoon anticyclone (AMA).O3 minima correspond to air masses that were recently uplifted from the surface where mixing ratios are low at the ITCZ. The O3 maxima correspond to old high-altitude air masses uplifted from either local or long-distance area of high O3 precursor emissions (Africa and South America during all the year, South Asia mainly in JJASO) and must be created during transport by photochemistry

    Re-examining policies for food security in Asia

    No full text
    In the wake of recent food price spikes, plus growing demands for food in emerging Asia and for biofuels in Europe and the United States, governments are re-examining their strategies for dealing with both short-term and long-term food security concerns. This paper argues that long-run trends in real agricultural prices have policy implications for food security that are at least as important as those related to short-lived spikes around trend prices. The paper therefore summarizes recent projections of markets to 2030 under various scenarios, and then reviews evidence on how trade policy restrictions typically are altered to insulate domestic markets from short-run fluctuations in international prices around their long-run trends. That provides a firm empirical basis for re-examining the effectiveness and efficiency of various policy options for ensuring food security in Asia and elsewhere. Those options include boosting agricultural productivity growth rates to deal with long-run concerns, and using more-appropriate domestic policy measures rather than trade policies to cope with price volatility.Kym Anderson & Shikha Jha & Signe Nelgen & Anna Strut
    corecore