4 research outputs found

    Discerning natural and anthropogenic organic matter inputs to salt marsh sediments of Ria Formosa lagoon (South Portugal)

    Get PDF
    Sedimentary organic matter (OM) origin and molecular composition provide useful information to understand carbon cycling in coastal wetlands. Core sediments from threors' Contributionse transects along Ria Formosa lagoon intertidal zone were analysed using analytical pyrolysis (Py-GC/MS) to determine composition, distribution and origin of sedimentary OM. The distribution of alkyl compounds (alkanes, alkanoic acids and alkan-2-ones), polycyclic aromatic hydrocarbons (PAHs), lignin-derived methoxyphenols, linear alkylbenzenes (LABs), steranes and hopanes indicated OM inputs to the intertidal environment from natural-autochthonous and allochthonous-as well as anthropogenic. Several n-alkane geochemical indices used to assess the distribution of main OM sources (terrestrial and marine) in the sediments indicate that algal and aquatic macrophyte derived OM inputs dominated over terrigenous plant sources. The lignin-derived methoxyphenol assemblage, dominated by vinylguaiacol and vinylsyringol derivatives in all sediments, points to large OM contribution from higher plants. The spatial distributions of PAHs (polyaromatic hydrocarbons) showed that most pollution sources were mixed sources including both pyrogenic and petrogenic. Low carbon preference indexes (CPI > 1) for n-alkanes, the presence of UCM (unresolved complex mixture) and the distribution of hopanes (C-29-C-36) and steranes (C-27-C-29) suggested localized petroleum-derived hydrocarbon inputs to the core sediments. Series of LABs were found in most sediment samples also pointing to domestic sewage anthropogenic contributions to the sediment OM.EU Erasmus Mundus Joint Doctorate fellowship (FUECA, University of Cadiz, Spain)EUEuropean Commission [FP7-ENV-2011, 282845, FP7-534 ENV-2012, 308392]MINECO project INTERCARBON [CGL2016-78937-R]info:eu-repo/semantics/publishedVersio

    Axonal Regrowth Through a Collagen Guidance Channel Bridging Spinal Cord to the Avulsed C6 Roots: Functional Recovery in Primates With Brachial Plexus Injury

    No full text
    International audienceIntraspinal implantation of a collagen guidance channel (CGC) to promote axon regeneration was investigated in marmosets with brachial plexus injury. After avulsion of the right C5, C6 and C7 spinal roots, a CGC containing (group B) or not (group A) a nerve segment, or a nerve graft (group C), was ventro-laterally implanted into the cord to bridge the ventral horn and the avulsed C6 roots. No spinal cord dysfunction was observed following surgery. Two months later, the postop-erative flaccid paralysis of the lesioned arm improved. In five months, a normal electromyogram of the affected biceps muscle was recorded in all repaired animals. Motor evoked potentials were obtained with a mean amplitude of 13.37 ŘŽ 13.66 V in group A, 13.21 ŘŽ 5.16 V in group B and 37.14 ŘŽ 35.16 V in group C. The force of biceps muscle contraction was 27.33 ŘŽ 20.03 g (group A), 24.33 ŘŽ 17.03 g (group B) and 37.38 ŘŽ 21.70 g (group C). Retrograde tracing by horseradish peroxidase showed labelled motoneurons ipsilaterally located in the C5 and C6 ventral horn, nearby the implantation site. The mean labelled neu-rons was 32.33 ŘŽ 21.13, 219.33 ŘŽ 176.29 and 64.33 ŘŽ 23.54 in group A, B and C respectively. Histological analysis presented numerous myelinated and unmy-elinated regenerating axons in the implant of these animals. Statistical analysis did not show significant difference among the three repaired groups. Our results indicate that spinal neurons can regenerate through a CGC to avulsed nerve roots and induce motor recovery in primates
    corecore