1,049 research outputs found

    Tillage Slows Fecal Bacteria Infiltration through Soil

    Get PDF
    Bacterial pathogens can degrade ground water quality by infiltrating and eroding from land treated with poultry wastes. The potential for ground water contamination (as well as associated health risks and cost of water treatment) greatly depends on the depth of soil to the water table or bedrock and soil structure. Pathogens must move through the soil profile to contaminate ground water (although sinkholes can provide a direct channel from the soil surface to the water table in karst areas). Deep soils have less potential for contamination than shallow soils. Structureless soils retain fecal bacteria better than well structured soils. Research at UK indicates that surface-applied fecal bacteria, and other contaminants, travel rapidly toward ground water through soil pores in well structured, intact soil. Tillage disrupts pores and channels in the tilled layer, and increases water and bacteria contact with soil. To improve our understanding of bacterial movement, and of the potential for ground water contamination, we decided to examine whether tillage affected fecal coliform transport through intact soil amended with poultry wastes. We used poultry wastes because their disposal is an increasingly important waste management issue in western Kentucky

    Fecal Coliform Transport through Intact Soil Blocks Amended with Poultry Manure

    Get PDF
    Poultry production in Kentucky increased almost 200% between 1991 and 1995. Their waste is typically land applied, and fecal pathogen runoff and infiltration may cause nonpoint source groundwater pollution. We looked at the preferential flow of fecal coliforms through undisturbed soil blocks since fecal bacteria typically infiltrate the soil profile to contaminate groundwater. Poultry manure was uniformly distributed on top of sod-covered or tilled (upper 12.5 cm) soil blocks and the blocks were irrigated. Drainage was collected in 100 uniformly spaced cells beneath each block and analyzed for fecal coliform content and drainage volume. The spatial distribution of drainage and fecal coliforms through the soil blocks was not uniform. Fecal coliforms appeared where most drainage flowed. Drainage water from each soil block consistently exceeded 200 000 fecal coliforms per 100 mL and was as great as 30 million fecal coliforms per 100 mL of leachate collected. Fecal coliforms leached as a pulse, but the breakthrough of fecal coliforms through tilled blocks was delayed with respect to the breakthrough of fecal coliforms through sod-covered blocks. Rainfall on a well-structured soil will cause the preferential movement of fecal bacteria, even with unsaturated flow conditions, and could contribute to fecal coliform concentrations in shallow groundwater that exceed standards for domestic discharge and primary contact water in Kentucky (200 fecal coliforms/100 mL)

    Fecal Coliform Transport through Intact Soil Blocks Amended with Poultry Manure

    Get PDF
    Poultry production in Kentucky increased almost 200% between 1991 and 1995. Their waste is typically land applied, and fecal pathogen runoff and infiltration may cause nonpoint source groundwater pollution. We looked at the preferential flow of fecal coliforms through undisturbed soil blocks since fecal bacteria typically infiltrate the soil profile to contaminate groundwater. Poultry manure was uniformly distributed on top of sod-covered or tilled (upper 12.5 cm) soil blocks and the blocks were irrigated. Drainage was collected in 100 uniformly spaced cells beneath each block and analyzed for fecal coliform content and drainage volume. The spatial distribution of drainage and fecal coliforms through the soil blocks was not uniform. Fecal coliforms appeared where most drainage flowed. Drainage water from each soil block consistently exceeded 200 000 fecal coliforms per 100 mL and was as great as 30 million fecal coliforms per 100 mL of leachate collected. Fecal coliforms leached as a pulse, but the breakthrough of fecal coliforms through tilled blocks was delayed with respect to the breakthrough of fecal coliforms through sod-covered blocks. Rainfall on a well-structured soil will cause the preferential movement of fecal bacteria, even with unsaturated flow conditions, and could contribute to fecal coliform concentrations in shallow groundwater that exceed standards for domestic discharge and primary contact water in Kentucky (200 fecal coliforms/100 mL)

    Linkages between Reach-scale Physical Habitat and Invertebrate Assemblages in Upland Streams

    Get PDF
    Determining the influence of physical habitat on biological structure in minimally disturbed settings is important if the effects of alterations to physical habitat are to be understood. This study tested whether reach-scale differences in physical habitat influence macroinvertebrate community composition at 24 sites in the Cairngorm Mountains, Scotland. Stream reaches were classified into channel types based on a geomorphic typology (i.e. step-pool, bedrock, plane-bed and pool-riffle). PERMANOVA indicated an overall significant relationship between the geomorphic typology and macroinvertebrate species-level composition, and among all combinations of channel types (such as step-pool and pool-riffle, step-pool and bedrock). Most channel types were dominated by high abundances of Baetis rhodani, Rhithrogena semicolorata and Leuctra inermis, which are ubiquitous in unpolluted gravel-bedded Scottish streams. However, reflecting significant differences in abundance of commoner taxa between types, indicator value (IndVal) analysis revealed that pool-riffle reaches were characterised by elmids (Limnius sp. and Oulimnius sp.) and Caenis rivulorum, and step-pool reaches by Alainites muticus, B. rhodani, L. inermis and Brachyptera risi. Geomorphic typing of rivers provides a useful basis for the initial assessment of ecological status whereas abundance-based biological data processed at the appropriate taxonomic resolution should be sensitive to physical-habitat modifications

    Solute Transport as Related to Soil Structure in Unsaturated Intact Soil Blocks

    Get PDF
    Concern about soil and groundwater pollution has resulted in numerous studies focused on solute transport. The objectives of our study were to investigate the effect of soil type and land-use management on solute movement. Transport of water and Cl− were measured through intact blocks of Maury (fine, mixed, semiactive, mesic Typic Paleudalf) and Cecil (fine, kaolinitic, thermic Typic Kanhapludult) soils, under steady-state, unsaturated flow conditions. Three replicate blocks for the Maury soil and two replicate blocks for the Cecil soil were studied per land-use treatment. The land-use treatments were conventional-till corn (Zea mays L.) production and long-term grass pasture. Individual blocks were instrumented with time domain reflectometry (TDR) probes at the 5-, 15-, and 25-cm depths. The effluent Cl− and TDR breakthrough curves were fitted using the convection dispersion equation (CDE); the estimated parameters were pore water velocity (v), dispersion coefficient (D), and, for the TDR breakthrough curves, maximum bulk electrical conductivity (BECmax). The CDE fitted the data very well, with model R 2 values ranging from 0.971 to 0.999. Volumetric water content (θ), total porosity, the soil water retention curve, and saturated hydraulic conductivity were determined on the same blocks. Volumetric water content increased (R2 = 0.25) as the slope of the water retention curve decreased. Increasing θ resulted in decreasing v (R2 =0.20) and thus, because of the linear relationship between D and v(R2 = 0.26), decreasing D Structural controls on solute dispersion in this study were mainly indirect, and related to variations in water content produced by differences in pore-size distribution

    Solute and Bacterial Transport through Partially-Saturated Intact Soil Blocks

    Get PDF
    Steady-state transport of water, chloride and bacteria was measured through intact blocks of Maury and Cecil soils, under partially saturated conditions. Major objectives were to determine if transport occurs uniformly or via preferential flow paths, and if soil physical properties could be used to predict breakthrough. The blocks were instrumented with TDR probes and mounted on a vacuum chamber containing 100 cells that collected eflluent. After each experiment the blocks were sampled for soil physical properties. The fluxes showed no spatial autocorrelation and the eflluent variance was not statistically different between soils. Less than 3% of the influent bacteria appeared in the effluent. Maximum bacterial breakthrough occurred after 0.25 water-filled pore volumes had been leached, and was greater for Cecil soil than for Maury soil. The chloride breakthrough curves were fitted to the convection dispersion equation. The best predictor of dispersivity was volumetric water content (R2 = 0.28, P \u3c 0.01), with dispersivity increasing with decreasing water content. Lower water contents lead to more tortuous flow paths and thus, a broadening of the velocity distribution. Soil structural controls on solute dispersion under partially saturated conditions are likely to be indirect, and related to differences in water content at given flux produced by differences in pore-size distribution

    In vivo chemical and structural analysis of plant cuticular waxes using stimulated Raman scattering microscopy.

    Get PDF
    The cuticle is a ubiquitous, predominantly waxy layer on the aerial parts of higher plants that fulfils a number of essential physiological roles, including regulating evapotranspiration, light reflection, and heat tolerance, control of development, and providing an essential barrier between the organism and environmental agents such as chemicals or some pathogens. The structure and composition of the cuticle are closely associated but are typically investigated separately using a combination of structural imaging and biochemical analysis of extracted waxes. Recently, techniques that combine stain-free imaging and biochemical analysis, including Fourier transform infrared spectroscopy microscopy and coherent anti-Stokes Raman spectroscopy microscopy, have been used to investigate the cuticle, but the detection sensitivity is severely limited by the background signals from plant pigments. We present a new method for label-free, in vivo structural and biochemical analysis of plant cuticles based on stimulated Raman scattering (SRS) microscopy. As a proof of principle, we used SRS microscopy to analyze the cuticles from a variety of plants at different times in development. We demonstrate that the SRS virtually eliminates the background interference compared with coherent anti-Stokes Raman spectroscopy imaging and results in label-free, chemically specific confocal images of cuticle architecture with simultaneous characterization of cuticle composition. This innovative use of the SRS spectroscopy may find applications in agrochemical research and development or in studies of wax deposition during leaf development and, as such, represents an important step in the study of higher plant cuticles

    Multiscale Soil Investigations: Physical Concepts And Mathematical Techniques

    Get PDF
    Soil variability has often been considered to be composed of “functional” (explained) variations plus random fl uctuations or noise. However, the distinction between these two components is scale dependent because increasing the scale of observation almost always reveals structure in the noise (Burrough, 1983). Soils can be seen as the result of spatial variation operating over several scales, indicating that factors infl uencing spatial variability differ with scale. Th is observation points to variability as a key soil attribute that should be studied

    Phase Transition in Liquid Drop Fragmentation

    Full text link
    A liquid droplet is fragmented by a sudden pressurized-gas blow, and the resulting droplets, adhered to the window of a flatbed scanner, are counted and sized by computerized means. The use of a scanner plus image recognition software enables us to automatically count and size up to tens of thousands of tiny droplets with a smallest detectable volume of approximately 0.02 nl. Upon varying the gas pressure, a critical value is found where the size-distribution becomes a pure power-law, a fact that is indicative of a phase transition. Away from this transition, the resulting size distributions are well described by Fisher's model at coexistence. It is found that the sign of the surface correction term changes sign, and the apparent power-law exponent tau has a steep minimum, at criticality, as previously reported in Nuclear Multifragmentation studies [1,2]. We argue that the observed transition is not percolative, and introduce the concept of dominance in order to characterize it. The dominance probability is found to go to zero sharply at the transition. Simple arguments suggest that the correlation length exponent is nu=1/2. The sizes of the largest and average fragments, on the other hand, do not go to zero but behave in a way that appears to be consistent with recent predictions of Ashurst and Holian [3,4].Comment: 10 pages, 11 figures. LaTeX (revtex4) with psfig/epsfi
    • …
    corecore