548 research outputs found
Hands-On Universe: A Global Program for Education and Public Outreach in Astronomy
Hands-On Universe (HOU) is an educational program that enables students to
investigate the Universe while applying tools and concepts from science, math,
and technology. Using the Internet, HOU participants around the world request
observations from an automated telescope, download images from a large image
archive, and analyze them with the aid of user-friendly image processing
software. This program is developing now in many countries, including the USA,
France, Germany, Sweden, Japan, Australia, and others. A network of telescopes
has been established among these countries, many of them remotely operated, as
shown in the accompanying demo. Using this feature, students in the classroom
are able to make night observations during the day, using a telescope placed in
another country. An archive of images taken on large telescopes is also
accessible, as well as resources for teachers. Students are also dealing with
real research projects, e.g. the search for asteroids, which resulted in the
discovery of a Kuiper Belt object by high-school students. Not only Hands-On
Universe gives the general public an access to professional astronomy, but it
is also a more general tool to demonstrate the use of a complex automated
system, the techniques of data processing and automation. Last but not least,
through the use of telescopes located in many countries over the globe, a form
of powerful and genuine cooperation between teachers and children from various
countries is promoted, with a clear educational goal.Comment: 4 pages, 1 figure, to appear in the proceedings of the ADASS X
conference, Boston, October 2000, ASP conf. pro
Satellite detection of vegetative damage and alteration caused by pollutants emitted by a zinc smelter
The author has identified the following significant results. Field observations and data collected by low flying aircraft were used to verify the accuracy of maps produced from the satellite data. Although areas of vegetation as small as six acres can accurately be detected, a white pine stand that was severely damaged by sulfur dioxide could not be differentiated from a healthy white pine stand because spectral differences were not large enough. When winter data were used to eliminate interference from herbaceous and deciduous vegetation, the damage was still undetectable. The analysis was able to produce a character map that accurately delineated areas of vegetative alteration due to high zinc levels accumulating in the soil. The map depicted a distinct gradient of less damage and alteration as the distance from the smelter increased. Although the satellite data will probably not be useful for detecting small acreages of damaged vegetation, it is concluded that the data may be very useful as an inventory tool to detect and delineate large vegetative areas possessing differing spectral signatures
Infrared to Ultraviolet Wavelength-Dependent Variations Within the Pulse Profile Peaks of the Crab Nebula Pulsar
We present evidence of wavelength-dependent variations within the infrared,
optical, and ultraviolet pulse profile peaks of the Crab Nebula pulsar. The
leading and trailing edge half-width half-maxima of the peaks display clear
differences in their wavelength dependences. In addition, phase-resolved
infrared-to-ultraviolet color spectra show significant variations from the
leading to trailing edges of the peaks. The color variations between the
leading and trailing edges remain significant over phase differences smaller
than 0.0054, corresponding to timescales of s. These results are not
predicted by any current models of the pulsar emission mechanism and offer new
challenges for the development of such models.Comment: 12 pages, 4 figure
K Corrections For Type Ia Supernovae and a Test for Spatial Variation of the Hubble Constant
Cross-filter K corrections for a sample of "normal" Type Ia supernovae (SNe)
have been calculated for a range of epochs. With appropriate filter choices,
the combined statistical and systematic K correction dispersion of the full
sample lies within 0.05 mag for redshifts z<0.7. This narrow dispersion of the
calculated K correction allows the Type Ia to be used as a cosmological probe.
We use the K corrections with observations of seven SNe at redshifts 0.3 < z
<0.5 to bound the possible difference between the locally measured Hubble
constant (H_L) and the true cosmological Hubble constant (H_0).Comment: 6 pages, 3 Postscript figures, uuencoded uses crckapb.sty and
psfig.sty. To appear in Thermonuclear Supernovae (NATO ASI), eds. R. Canal,
P. Ruiz-LaPuente, and J. Isern. Postscript version is also available at
http://www-supernova.lbl.gov
Cosmology from Type Ia Supernovae
This presentation reports on first evidence for a
low-mass-density/positive-cosmological-constant universe that will expand
forever, based on observations of a set of 40 high-redshift supernovae. The
experimental strategy, data sets, and analysis techniques are described. More
extensive analyses of these results with some additional methods and data are
presented in the more recent LBNL report #41801 (Perlmutter et al., 1998;
accepted for publication in Ap.J.), astro-ph/9812133 .
This Lawrence Berkeley National Laboratory reprint is a reduction of a poster
presentation from the Cosmology Display Session #85 on 9 January 1998 at the
American Astronomical Society meeting in Washington D.C. It is also available
on the World Wide Web at http://supernova.LBL.gov/ This work has also been
referenced in the literature by the pre-meeting abstract citation: Perlmutter
et al., B.A.A.S., volume 29, page 1351 (1997).Comment: 9 pages, 8 color figs. Presented at Jan '98 AAS Meeting, also cited
as BAAS,29,1351(1997). Archived here in response to requests; see more
extensive analyses in ApJ paper (astro-ph/9812133
Implications For The Hubble Constant from the First Seven Supernovae at z >= 0.35
The Supernova Cosmology Project has discovered over twenty-eight supernovae
(SNe) at 0.35 <z < 0.65 in an ongoing program that uses Type Ia SNe as
high-redshift distance indicators. Here we present measurements of the ratio
between the locally observed and global Hubble constants, H_0^L/H_0^G, based on
the first 7 SNe of this high-redshift data set compared with 18 SNe at z <= 0.1
from the Calan/Tololo survey. If Omega_M <= 1, then light-curve-width corrected
SN magnitudes yield H_0^L/H_0^G < 1.10 (95% confidence level) in both a
Lambda=0 and a flat universe. The analysis using the SNe Ia as standard candles
without a light-curve-width correction yields similar results. These results
rule out the hypothesis that the discrepant ages of the Universe derived from
globular clusters and recent measurements of the Hubble constant are
attributable to a locally underdense bubble. Using the
Cepheid-distance-calibrated absolute magnitudes for SNe Ia of Sandage (1996},
we can also measure the global Hubble constant, H_0^G. If Omega_M >= 0.2, we
find that H_0^G < 70 km/s/Mpc in a Lambda=0 universe and H_0^G < 78 km/s/Mpc in
a flat universe, correcting the distant and local SN apparent magnitudes for
light curve width. Lower results for H_0^G are obtained if the magnitudes are
not width corrected.Comment: 13 pages, 2 Postscript figures. Preprint also available at
http://www-supernova.lbl.gov . To appear in ApJ Letter
The PLATO Dome A Site-Testing Observatory : instrumentation and first results
The PLATeau Observatory (PLATO) is an automated self-powered astrophysical observatory that was deployed to Dome A, the highest point on the Antarctic plateau, in 2008 January. PLATO consists of a suite of site-testing instruments designed to quantify the benefits of the Dome A site for astronomy, and science instruments designed to take advantage of the unique observing conditions. Instruments include CSTAR, an array of optical telescopes for transient astronomy; Gattini, an instrument to measure the optical sky brightness and cloud cover statistics; DASLE, an experiment to measure the statistics of the meteorological conditions within the near-surface layer; Pre-HEAT, a submillimeter tipping radiometer measuring the atmospheric transmission and water vapor content and performing spectral line imaging of the Galactic plane; and Snodar, an acoustic radar designed to measure turbulence within the near-surface layer. PLATO has run completely unattended and collected data throughout the winter 2008 season. Here we present a detailed description of the PLATO instrument suite and preliminary results obtained from the first season of operation
Photometry of Variable Stars from Dome A, Antarctica
Dome A on the Antarctic plateau is likely one of the best observing sites on
Earth thanks to the excellent atmospheric conditions present at the site during
the long polar winter night. We present high-cadence time-series aperture
photometry of 10,000 stars with i<14.5 mag located in a 23 square-degree region
centered on the south celestial pole. The photometry was obtained with one of
the CSTAR telescopes during 128 days of the 2008 Antarctic winter.
We used this photometric data set to derive site statistics for Dome A and to
search for variable stars. Thanks to the nearly-uninterrupted synoptic
coverage, we find 6 times as many variables as previous surveys with similar
magnitude limits. We detected 157 variable stars, of which 55% are
unclassified, 27% are likely binaries and 17% are likely pulsating stars. The
latter category includes delta Scuti, gamma Doradus and RR Lyrae variables. One
variable may be a transiting exoplanet.Comment: Accepted for publication in the Astronomical Journal. PDF version
with high-resolution figures available at
http://faculty.physics.tamu.edu/lmacri/papers/wang11.pd
The sky brightness and transparency in i-band at Dome A, Antarctica
The i-band observing conditions at Dome A on the Antarctic plateau have been
investigated using data acquired during 2008 with the Chinese Small Telescope
ARray. The sky brightness, variations in atmospheric transparency, cloud cover,
and the presence of aurorae are obtained from these images. The median sky
brightness of moonless clear nights is 20.5 mag arcsec^{-2} in the SDSS
band at the South Celestial Pole (which includes a contribution of about 0.06
mag from diffuse Galactic light). The median over all Moon phases in the
Antarctic winter is about 19.8 mag arcsec^{-2}. There were no thick clouds in
2008. We model contributions of the Sun and the Moon to the sky background to
obtain the relationship between the sky brightness and transparency. Aurorae
are identified by comparing the observed sky brightness to the sky brightness
expected from this model. About 2% of the images are affected by relatively
strong aurorae.Comment: There are 1 Latex file and 14 figures accepted by A
- …
