45 research outputs found

    Improvement of neuropathology and transcriptional deficits in CAG 140 knock-in mice supports a beneficial effect of dietary curcumin in Huntington's disease

    Get PDF
    <p>Abstract</p> <p>Backgound</p> <p>No disease modifying treatment currently exists for Huntington's disease (HD), a fatal neurodegenerative disorder characterized by the formation of amyloid-like aggregates of the mutated huntingtin protein. Curcumin is a naturally occurring polyphenolic compound with Congo red-like amyloid binding properties and the ability to cross the blood brain barrier. CAG140 mice, a knock-in (KI) mouse model of HD, display abnormal aggregates of mutant huntingtin and striatal transcriptional deficits, as well as early motor, cognitive and affective abnormalities, many months prior to exhibiting spontaneous gait deficits, decreased striatal volume, and neuronal loss. We have examined the ability of life-long dietary curcumin to improve the early pathological phenotype of CAG140 mice.</p> <p>Results</p> <p>KI mice fed a curcumin-containing diet since conception showed decreased huntingtin aggregates and increased striatal DARPP-32 and D1 receptor mRNAs, as well as an amelioration of rearing deficits. However, similar to other antioxidants, curcumin impaired rotarod behavior in both WT and KI mice and climbing in WT mice. These behavioral effects were also noted in WT C57Bl/6 J mice exposed to the same curcumin regime as adults. However, neither locomotor function, behavioral despair, muscle strength or food utilization were affected by curcumin in this latter study. The clinical significance of curcumin's impairment of motor performance in mice remains unclear because curcumin has an excellent blood chemistry and adverse event safety profile, even in the elderly and in patients with Alzheimer's disease.</p> <p>Conclusion</p> <p>Together with this clinical experience, the improvement in several transgene-dependent parameters by curcumin in our study supports a net beneficial effect of dietary curcumin in HD.</p

    Substantively Lowered Levels of Pantothenic Acid (Vitamin B5) in Several Regions of the Human Brain in Parkinson’s Disease Dementia

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-08-23, pub-electronic 2021-08-25Publication status: PublishedFunder: Endocore Research Associates, NZ; Grant(s): 60147, 3626585; 3702766, JXU058, UOAX0815Funder: Maurice and Phyllis Paykel Trust; Grant(s): 3627036Funder: Maurice Wilkins Centre for Molecular Biodiscovery; Grant(s): 9341-3622506Funder: Oakley Mental Health Research Foundation; Grant(s): 3456030; 3627092; 3701339; 3703253; 3702870Funder: Neurological Foundation of New Zealand; Grant(s): N/AFunder: Medical Research Council; Grant(s): MR/L010445/1 and MR/L011093/1Funder: Alzheimer’s Research UK; Grant(s): ARUK-PPG2014B-7Pantothenic acid (vitamin B5) is an essential trace nutrient required for the synthesis of coenzyme A (CoA). It has previously been shown that pantothenic acid is significantly decreased in multiple brain regions in both Alzheimer’s disease (ADD) and Huntington’s disease (HD). The current investigation aimed to determine whether similar changes are also present in cases of Parkinson’s disease dementia (PDD), another age-related neurodegenerative condition, and whether such perturbations might occur in similar regions in these apparently different diseases. Brain tissue was obtained from nine confirmed cases of PDD and nine controls with a post-mortem delay of 26 h or less. Tissues were acquired from nine regions that show high, moderate, or low levels of neurodegeneration in PDD: the cerebellum, motor cortex, primary visual cortex, hippocampus, substantia nigra, middle temporal gyrus, medulla oblongata, cingulate gyrus, and pons. A targeted ultra–high performance liquid chromatography—tandem mass spectrometry (UHPLC-MS/MS) approach was used to quantify pantothenic acid in these tissues. Pantothenic acid was significantly decreased in the cerebellum (p = 0.008), substantia nigra (p = 0.02), and medulla (p = 0.008) of PDD cases. These findings mirror the significant decreases in the cerebellum of both ADD and HD cases, as well as the substantia nigra, putamen, middle frontal gyrus, and entorhinal cortex of HD cases, and motor cortex, primary visual cortex, hippocampus, middle temporal gyrus, cingulate gyrus, and entorhinal cortex of ADD cases. Taken together, these observations indicate a common but regionally selective disruption of pantothenic acid levels across PDD, ADD, and HD

    Severe and Regionally Widespread Increases in Tissue Urea in the Human Brain Represent a Novel Finding of Pathogenic Potential in Parkinson’s Disease Dementia

    Get PDF
    From Frontiers via Jisc Publications RouterHistory: collection 2021, received 2021-05-18, accepted 2021-09-30, epub 2021-10-22Publication status: PublishedWidespread elevations in brain urea have, in recent years, been reported in certain types of age-related dementia, notably Alzheimer’s disease (AD) and Huntington’s disease (HD). Urea increases in these diseases are substantive, and approximate in magnitude to levels present in uraemic encephalopathy. In AD and HD, elevated urea levels are widespread, and not only in regions heavily affected by neurodegeneration. However, measurements of brain urea have not hitherto been reported in Parkinson’s disease dementia (PDD), a condition which shares neuropathological and symptomatic overlap with both AD and HD. Here we report measurements of tissue urea from nine neuropathologically confirmed regions of the brain in PDD and post-mortem delay (PMD)-matched controls, in regions including the cerebellum, motor cortex (MCX), sensory cortex, hippocampus (HP), substantia nigra (SN), middle temporal gyrus (MTG), medulla oblongata (MED), cingulate gyrus, and pons, by applying ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Urea concentrations were found to be substantively elevated in all nine regions, with average increases of 3–4-fold. Urea concentrations were remarkably consistent across regions in both cases and controls, with no clear distinction between regions heavily affected or less severely affected by neuronal loss in PDD. These urea elevations mirror those found in uraemic encephalopathy, where equivalent levels are generally considered to be pathogenic, and those previously reported in AD and HD. Increased urea is a widespread metabolic perturbation in brain metabolism common to PDD, AD, and HD, at levels equal to those seen in uremic encephalopathy. This presents a novel pathogenic mechanism in PDD, which is shared with two other neurodegenerative diseases

    Mechanism of Human Papillomavirus Binding to Human Spermatozoa and Fertilizing Ability of Infected Spermatozoa

    Get PDF
    Human papillomaviruses (HPVs) are agents of the most common sexually transmitted diseases in females and males. Precise data about the presence, mechanism of infection and clinical significance of HPV in the male reproductive tract and especially in sperm are not available. Here we show that HPV can infect human sperm, it localizes at the equatorial region of sperm head through interaction between the HPV capsid protein L1 and syndecan-1. Sperm transfected with HPV E6/E7 genes and sperm exposed to HPV L1 capsid protein are capable to penetrate the oocyte and transfer the virus into oocytes, in which viral genes are then activated and transcribed. These data show that sperm might function as vectors for HPV transfer into the oocytes, and open new perspectives on the role of HPV infection in males and are particularly intriguing in relation to assisted reproduction techniques

    Paying for Permanence: Public Preferences for Contaminated Site Cleanup

    Full text link

    Immunohistochemical localization of TRPC6 in the rat substantia nigra.

    No full text
    Transient receptor potential channels (TRPC) are plasma membrane, nonselective cationic channels and have been proposed as candidates involved in the regulation of cellular Ca2+ influx [D.E. Clapham, L.W. Runnels, C., Strubing, The TRP ion channel family, Nat. Rev. Neurosci. 2 (2001) 387-396; A. Martorana, C. Giampa, Z. DeMarch, M.T. Viscomi, S. Patassini, G. Sancesario, G. Bernardi, F.R. Fusco, Distribution of TRPC1 receptors in dendrites of rat substantia nigra: a confocal and electron microscopy study, Eur. J. Neurosci. 24 (2006) 732-738]. Studies on regional localization patterns of TRPCs are necessary to provide helpful guidelines for correlating current types with particular channels. In this study, we examined the distribution of one particular member of TRPC superfamily, namely, TRPC6, in the substantia nigra of normal rat brain. Single and double label immunohistochemistry were employed to perform both light and confocal microscopy observations. Our single label studies showed that, in the substantia nigra, TRPC6 labeled the perikarya with a diffuse and intense immunoreaction product distributed throughout cell cytoplasm whereas only a light immunostaining was observed in the cell nuclei. No labeling of axon or terminals was observed, although TRPC6 was evenly distributed in the neuropil. Our dual label studies showed a TRPC6 immunoreactivity pattern that was localized into the proximal dendrites and axon hillock of the large dopaminergic neurons identified by TH immunoreaction. Furthermore, our double label immunofluorescence study for TRPC6 and mGluR1 showed a complete co-localization of the two markers in the substantia nigra. Moreover, TRPC6 did not co-localize with synaptophysin. Thus, our study shows the postsynaptic localization of TRPC6 and its association with mGluR1 in the midbrain dopamine neurons
    corecore