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Abstract: Pantothenic acid (vitamin B5) is an essential trace nutrient required for the synthesis of
coenzyme A (CoA). It has previously been shown that pantothenic acid is significantly decreased
in multiple brain regions in both Alzheimer’s disease (ADD) and Huntington’s disease (HD). The
current investigation aimed to determine whether similar changes are also present in cases of
Parkinson’s disease dementia (PDD), another age-related neurodegenerative condition, and whether
such perturbations might occur in similar regions in these apparently different diseases. Brain tissue
was obtained from nine confirmed cases of PDD and nine controls with a post-mortem delay of
26 h or less. Tissues were acquired from nine regions that show high, moderate, or low levels of
neurodegeneration in PDD: the cerebellum, motor cortex, primary visual cortex, hippocampus,
substantia nigra, middle temporal gyrus, medulla oblongata, cingulate gyrus, and pons. A targeted
ultra–high performance liquid chromatography—tandem mass spectrometry (UHPLC-MS/MS)
approach was used to quantify pantothenic acid in these tissues. Pantothenic acid was significantly
decreased in the cerebellum (p = 0.008), substantia nigra (p = 0.02), and medulla (p = 0.008) of PDD
cases. These findings mirror the significant decreases in the cerebellum of both ADD and HD cases,
as well as the substantia nigra, putamen, middle frontal gyrus, and entorhinal cortex of HD cases,
and motor cortex, primary visual cortex, hippocampus, middle temporal gyrus, cingulate gyrus, and
entorhinal cortex of ADD cases. Taken together, these observations indicate a common but regionally
selective disruption of pantothenic acid levels across PDD, ADD, and HD.

Keywords: pantothenic acid; vitamin B5; Parkinson’s disease dementia; mass spectrometry;
Alzheimer’s disease; Huntington’s disease; metabolomics

1. Introduction

Parkinson’s disease (PD) is a common neurodegenerative disorder, primarily charac-
terised clinically by bradykinesia, resting tremor, and rigidity, and neuropathologically by
extensive dopaminergic neuronal loss and accumulation of α-synuclein deposits known
as Lewy bodies. These changes occur most severely within the substantia nigra pars com-
pacta, but also throughout other regions of the brain [1–3]. As well as motor dysfunction,
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cognitive impairment is a common symptom in PD as the disease progresses, with up to
46% of individuals going on to develop Parkinson’s disease dementia (PDD) in the ten
years following initial diagnosis [4], and up to 80% by twenty years [5].

Despite how common the condition is, the causes and mechanisms of PDD remain
poorly characterised. Most cases are sporadic with no identifiable cause, and treatments
remain purely symptomatic, with even the most promising clinical trials thus far being
unable to slow, stop, or reverse the progression of the disease. This is also the case with
other similar neurodegenerative diseases, such as Alzheimer’s (ADD) and Huntington’s
disease (HD), which also currently have only symptomatic treatments despite extensive
interest and studies into causes, mechanisms, and potential treatments [6].

These neurodegenerative diseases share several characteristics. Age is a primary risk
factor for the development of symptoms (although HD is always caused by a dominant
autosomal mutation in the huntingtin gene; the development of symptomology generally
occurs with older age), cerebral protein deposition is present in each condition (α-synuclein
in PD, tau and amyloid-β in ADD, and huntingtin in HD), and the clinical presentation can
show significant overlap, with increased risk of psychological complaints [7], issues with
sleep [8], and difficulty walking [9], as well as the progressive development of cognitive
impairment [10,11].

These findings have raised the question as to whether there may be common
pathogenic insults present across multiple neurodegenerative diseases contributing to
these similarities in presentation. Common disruptions in multiple metabolic pathways
have already been identified in ADD and HD brains, including widespread urea [12–15]
and glucose increases [13,16–18], dysregulation of glucose and purine metabolism path-
ways [13,16,17,19,20], and decreases in the essential nutrient pantothenic acid [21,22], also
known as vitamin B5. Pantothenic acid is essential for the synthesis of coenzyme A (CoA),
a molecule with extensive roles in metabolism including in the tricarboxylic acid (TCA)
cycle, fatty acid metabolism, and acetylcholine and myelin synthesis, amongst others.
Dysregulation of pantothenic acid could disrupt the supply of this essential molecule, with
widespread downstream metabolic complications. Inborn mutations in the pantothenate
kinase 2 gene (PKAN2), which is an intermediate in the CoA synthesis pathway, are
associated with a disease known as pantothenate kinase-associated neurodegeneration [23],
a condition characterised by severe brain damage within the basal ganglia and progressive
cognitive and motor dysfunction including parkinsonism.

Levels of pantothenic acid have not, to our knowledge, been investigated previously
in the PDD brain. Thus, this investigation is, to our knowledge, the first to report dysreg-
ulation of cerebral pantothenic acid in PDD, similar to that previously observed in ADD
and HD.

2. Results
2.1. Cohort Characterisation

Cases and controls were matched for age, sex, post-mortem delay (PMD), and brain
weight, with no significant differences in any of these variables (see Table 1). Samples were
acquired with the lowest PMD possible, with a maximum of 26 h. Additional metadata,
including cause of death and disease staging, were also obtained for all samples (see
Supplementary Material A).

Due to a lack of available SN tissue for two controls, two additional, replacement SN
samples (C10 and C11) were obtained from different donors to those employed for the
other brain regions. When the revised SN cohort was analysed, it was still matched for age,
sex, and brain weight, but cases had a lower PMD than controls (p = 0.03; see Table 1).
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Table 1. Comparison of Brain Bank Groups.

Gender (% Male) Age at Death (Years) PMD (Hours)

Controls
(n = 9) 44 70

(61–79)
19.8

(12.5–26.0)

SN Controls
(n = 9) † 44 70

(62–79)
20.6

(10.8–26.0)

Cases
(n = 9) † 66 73

(61–81)
14.6

(4.3–21.9) *
Mean (range) age, PMD, brain weight and Braak stage. * p < 0.05 between cases and controls as determined
by Mann–Whitney U Test. † Brain weight not available for one sample. See Supplementary Material A for
individual data.

2.2. Pantothenic Acid Analysis

Concentrations of pantothenic acid were found to be significantly lower in the CB
(p = 0.008), SN (p = 0.02), and MED (p = 0.008) of cases compared to controls (see Table 2
and Figure 1a). In these three regions, there was a decrease of approximately 40% in PDD
cases. There was also a suggestion of decreased pantothenic acid in the pons, but this
did not reach significance (p = 0.0503). Inter-regional concentrations of pantothenic acid
were consistent, with no significant differences between any two regions in either cases
or controls (data not shown). A ROC curve was generated using values from all three
regions showing significant case–control differences (SN, CB, and MED; see Figure 1b).
The ROC curve has an area under curve (AUC) value of 0.82 (p < 0.0001), indicating good
discriminatory power in distinguishing between PDD cases and controls.

Table 2. Pantothenic Acid Concentrations in PDD Cases and Controls.

Region Controls (n = 9)
(µmol/kg Wet-Weight)

PDD Cases (n = 9)
(µmol/kg Wet-Weight) Fold-Change p-Value

CB 76.7
(51.3–102.0)

45.7
(21.8–69.7) 0.6 0.008

MCX 56.9
(44.5–69.4)

45.7
(26.6–64.9) 0.8 0.3

PVC 61.1
(47.7–74.5)

54.6
(29.8–79.4) 0.9 0.5

HP 68.1
(40.2–96.0)

59.3
(26.6–91.9) 0.9 0.4

SN 71.6
(53.6–89.6)

46.0
(29.2–62.9) 0.6 0.02

MTG 47.9
(34.6–61.2)

44.2
(20.2–68.3) 0.9 0.4

MED 46.8
(38.5–55.0)

27.1
(11.5–42.6) 0.6 0.008

CG 61.3
(51.9–70.8)

46.9
(28.9–64.9) 0.8 0.1

PONS 72.2
(54.3–90.1)

48.2
(26.8–69.7) 0.7 0.0503

Mean pantothenic acid concentration with 95% confidence intervals in µmol/kg wet-weight. Case–control
differences were determined using Mann–Whitney U test and p < 0.05 was considered significant. Fold-changes
are cases compared to corresponding controls. See Supplementary Material B for individual data.
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Figure 1. Pantothenic Acid Concentrations in PDD Cases and Controls. (a) Mean pantothenic acid concentrations ± 95%
confidence intervals in µmol/kg wet-weight. Case–control differences were determined using Mann–Whitney U test.
* p < 0.05; ** p < 0.01. C = Controls; PDD = PDD cases. (b) receiver-operating characteristic (ROC) curve for pantothenic acid
in all brain regions showing significant case–control differences (SN, CB, and MED). Area under curve (AUC) value was
0.8210 with p < 0.0001.

Neither of the substituted SN controls showed significant differences in pantothenic
acid concentrations compared to the other cases in the SN cohort (see Supplementary
Material B for individual values). Case–control differences in the SN remained significant
with exclusion of substituted SN controls C10 and C11. A previous analysis by our group
of the effects of PMD on human and rat brain metabolites found no changes in pantothenic
acid concentrations up to 24 h PMD [24]. Together with the data here, there appears to be
no significant effect of PMD on pantothenic acid levels in the current cohort.

Statistical analyses were performed following this analysis to confirm the sample
size used was sufficient to determine significant case–control differences at p < 0.05: the
required sample size was <10 in all regions that showed significant case–control differences,
as well as in the CG and pons (see Supplementary Table S3).
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2.3. Comparisons with ADD and HD

As well as investigating case–control comparisons of pantothenic acid in PDD, we
also compared the current results with those we obtained in previous analyses of other
neurodegenerative diseases. Our group has previously performed analyses of pantothenic
levels in ADD [21] and HD [17,22] by methods comparable to those used in this study.
Although there is some variation in the brain regions investigated, it is possible to compare
findings across multiple areas of the brain in all three conditions, including the CB, MCX,
PVC, HP, MTG, and CG, as well as the SN in PDD and HD (see Table 3 and Figure 2).

Table 3. Pantothenic Acid Concentrations in PDD Cases and Controls.

Region Fold-Change PDD Fold-Change AD
(Xu et al., 2016)

Fold-Change HD
(Patassini et al., 2015)

CB 0.6 0.5 0.6

MCX 0.8 0.3 0.6

PVC 0.9 0.4 0.5

HP 0.9 0.5 0.5

SN 0.6 - 0.6

MTG 0.9 0.5 0.6

MED 0.6 - -

CG 0.8 0.5 0.5

PONS 0.7 - -
Case–control fold-changes in pantothenic acid between three dementias. CB = cerebellum; MCX = motor cortex;
PVC = primary visual cortex; HP = hippocampus; SN = substantia nigra; MTG = middle temporal gyrus;
MED = medulla; CG = cingulate gyrus; PUT = putamen; GP = globus pallidus; MFG = middle frontal gyrus;
ENT = entorhinal cortex. Significant intra-cohort case–control fold-changes are highlighted in bold.
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Notably, PDD, ADD, and HD all showed significantly decreased pantothenic acid in
the CB, where the reduction was ~40–50%. This is the only region investigated in all three
diseases that showed a significant alteration in every condition. Both PDD and HD show a
significant reduction of approximately 40% in the SN, but this region was not investigated
in ADD. The MED was not included in either the ADD or HD studies, and so cannot be
compared to PDD. Both ADD and HD showed significantly decreased pantothenic acid in
the entorhinal cortex (ENT), but this region was not investigated in the current PDD study.

Pantothenic acid dysregulations appear to be less widespread in PDD than either
ADD or HD, showing changes in three of nine investigated regions, in comparison to seven



Metabolites 2021, 11, 569 6 of 12

of eleven regions in HD and all seven areas reported on in ADD. Where reductions occur,
they are on a similar scale, at approximately 60% of control values.

3. Discussion

Outside our own previous analyses, pantothenic acid levels have not, to our knowl-
edge, been investigated in the ADD, HD, or PDD brain. Interestingly though, an increased
dietary intake of pantothenic acid has been associated with increased amyloid-β burden
in individuals with cognitive impairment [25]. This may indicate that pantothenic acid
deficiencies in the brain cannot be counteracted by an increased dietary intake. In PD, in-
creased microbial pantothenic acid production in patient stool samples has been positively
associated with non-motor symptoms such as constipation by one group [26], whereas
another investigation has reported decreased pantothenic acid levels in PD patient faecal
samples [27]. Altogether, the current literature on pantothenic acid levels in dementia is, at
present, very limited, and the current investigation offers novel insights into disruptions in
this molecule within the PDD brain.

The cohort for this investigation was carefully selected to avoid as many possible
confounding factors as possible, including close matching for age, sex, PMD, and brain
weight. A PMD of 26 h or less was considered suitable, as a previous analysis carried out
by our group has observed no changes in pantothenic acid concentrations in either the
cerebellum or cortex of rats for up to 24 h PMD, although a modest–significant increase
was observed by 48 h in the cortex [24]. To our knowledge, this has not been investigated in
human brains, most likely due to the high number of confounding factors that would make
getting sufficient sample sizes difficult, and the unfeasibility of obtaining very low PMD
brain samples from humans. As such, we take the results from the investigation on rat
brains to be the best available evidence for our selected PMD timeframe but are cognisant
that human brain samples may show differences in this respect to animal models.

Pantothenic acid is required for synthesis of CoA, which plays roles in many major
metabolic pathways, including several that have previously been reported to be disrupted
in PD. For example, CoA is a carbon transporter in the TCA cycle, which has been reported
to show downregulated gene expression and enzyme levels in PD brain [28,29], as well as
decreased metabolite intermediate levels in the PD cerebrospinal fluid [30]. Reductions in
pantothenic acid may lead to insufficient production of CoA for proper functioning of the
TCA cycle.

It is possible that such a perturbation may converge with disruptions in other
metabolic pathways. Usually, pyruvate produced by the breakdown of glucose in the
glycolytic pathway would enter the TCA cycle after being converted into acetyl-CoA in the
mitochondria. This process itself requires the presence of CoA. Glycolysis has been widely
observed to be downregulated in PD [31], and even suggested as a possible therapeutic
target in the disease [32]. This dysregulation reflects increased levels of glucose [33]
and overall glucose hypometabolism throughout the PD and PDD brain [31,34,35],
correlating with motor and cognitive symptoms [36,37]. As such, reduced pantothenic
acid may link not only reduced TCA cycle activity, but also decreased glycolysis and
glucose hypometabolism in the PDD brain. This may be a shared pathogenic mech-
anism with ADD and HD, which also show increased brain-glucose levels, impaired
glycolytic and TCA cycle activity, and increased glucose hypometabolism throughout the
brain [12,13,16–18,20].

In order to determine whether these changes are initial drivers of metabolic dysfunc-
tion in PDD, rather than simply being a late-stage downstream result of neuronal cell death,
it is necessary to quantify pantothenic acid levels in pre-symptomatic or early-stage PD/D
patients. However, as there are currently no methods available for quantifying pantothenic
acid in vivo to the authors’ knowledge, and as it is not yet possible to determine who will
go on to develop PD with certainty (and so take measurements from pre-symptomatic
individuals who passed away prior to developing the disease), this cannot be investigated
at this stage. However, pantothenic acid has been seen to be decreased in the brains of
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individuals with pre-symptomatic HD, which can be positively diagnosed due to the
autosomal dominant huntingtin mutation present in all individuals with HD from birth,
with levels most markedly lowered in highly impacted brain regions [38]. This indicates
that pantothenic acid levels can decrease prior to extensive neuronal loss, but development
of in vivo techniques for measuring pantothenic acid or reliable biomarkers for diagnosing
pre-symptomatic PD would be necessary to conclude that this is also the case in PD/D.

Another possible contributor to the alterations observed here could be decreased
microbial production of pantothenic acid. Over recent decades, more and more studies
have been reporting observations that support the microbiota–gut–brain hypothesis of
PD, wherein microbial alterations and initial accumulations of pathogenic α-synuclein
deposits in the gut spread in a prion-like manner from the peripheral to the central nervous
system, resulting in inflammation, increased permeability of the blood–gut and blood–
brain barriers, and the spread of α-synuclein inclusions to the PD brain itself [39–41]—in
some cases, before the development of motor symptoms [42]. Indeed, α-synuclein Braak
staging itself, commonly used to determine the PD disease stage, has described α-synuclein
inclusions in the gastrointestinal tract of PD patients [43]. Decreased microbial production
of pantothenic acid has been observed in stool samples taken from PD patients, and
has been associated with non-motor symptoms, particularly constipation [26], which is
commonly observed in pre-symptomatic individuals that later go on to develop PD [44].
Another study has also reported overall decreases in pantothenic acid levels in the PD
gut microbiota taken from faecal samples along with reductions in anti-inflammatory
bacteria [27]. If faecal samples could be obtained from individuals who later go on to
develop PD for quantification of pantothenic acid, it could be better determined whether
pantothenic acid is likely to be a driving force in metabolic dysregulation in PD/D, or
whether it is a later downstream effect of the disease; however, this remains difficult
without biomarkers of pre-symptomatic disease.

One interesting distinction between PDD and ADD/HD is the variability in regions
affected by lowered pantothenic acid levels. In PDD, only the SN, MED, and CB showed
significant reductions in pantothenic acid levels. The SN is the region most severely
affected by neuronal loss in PD, and the MED one of the first areas to show Lewy body
deposition according to typical PD/PDD progression as defined by α-synuclein Braak
staging [1], suggesting that more severely or earlier-affected areas of the PDD brain may
show pantothenic acid reduction. However, the CB is not an area typically associated
with PD, with varying reports on the degree of atrophy in this region [45], although it has
been observed to show functional and morphological changes, which have been theorised
to include both pathological and protective functions in the disease [46]. Furthermore,
reduced pantothenic acid was also observed in the CB of the ADD and HD cases, indicating
a shared perturbation across all three diseases in this region. This may indicate a higher
degree of involvement of the cerebellum in neurodegenerative diseases than previously
considered and would benefit from further investigation with a larger sample size. HD also
showed significant decreases in the SN, but otherwise, there were no regional similarities
observed between PDD and ADD or HD. This could suggest a regional susceptibility in
pantothenic acid reductions that contributes to the variability in clinical presentations in
different conditions, despite some areas of shared pathology and/or symptomology.

However, investigations of other regions of the brain that are highly impacted by neu-
rodegeneration in both PD/D and HD, such as the putamen and caudate nucleus—which
were not included in this analysis as regions were selected to try to cover moderately-
affected and relatively spared regions of the PDD brain as well as highly affected areas—
may reveal more similarities between these conditions than can be observed here. Wider
investigation of further highly affected, moderately affected, and relatively spared regions
throughout the PDD brain could also provide more evidence towards the possibility of
regional susceptibility in this particular disease, which is currently limited here by sample
size and the small number of investigated regions. Yet, further to this, the determination of
α-synuclein levels within individual brain regions alongside pantothenic acid concentra-
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tions could more convincingly determine any correlation between Lewy body deposition
and changes in pantothenic acid in the PDD brain. This was not possible with the current
sample set but could provide evidence towards the hypothesis of regional susceptibility to
pantothenic acid alternations in PDD suggested here.

Overall, pantothenic acid reductions present a novel and region-specific pathogenic
insult in PDD, ADD, and HD, which may contribute to observed disease mechanisms such
as glucose hypometabolism and other related metabolic dysfunctions.

4. Materials and Methods
4.1. Tissue for Pantothenic Acid Quantification

Brain tissue from nine regions, including the middle temporal gyrus (MTG); motor
cortex (MCX); primary visual cortex (PVC); hippocampus (HP); anterior cingulate gyrus
(CG); cerebellum, at the level of the dentate nucleus (CB); substantia nigra (SN); pons; and
medulla oblongata (MED), were obtained from nine confirmed cases of PDD and nine
controls from the University of Miami Brain Endowment Bank, USA (part of the National
Institute of Health NeuroBioBank network). These regions were selected based on three
main criteria: (1) availability of as many regions as possible from the same donor (this is
more difficult when including multiple high-impact regions, which are in high demand), (2)
inclusion of not only regions highly impacted in PDD, but also moderately impacted and
relatively spared regions in order to investigate whether changes in B5 mirror typical levels
of neurodegeneration observed in the PDD brain, and (3) overlap with regions investigated
in previous analyses of AD and HD brains, so that comparisons could be made between
different conditions. All available patient data were collected and recorded, including age
at death, sex, brain weight, post-mortem delay (PMD), α-synuclein Braak stage, and cause
of death (see Supplementary Material A for individual patient data).

4.2. Diagnosis and Severity of PDD Cases

Tissues obtained from both cases and controls were examined and diagnosed by the
referring neuropathologists of the Miami Brain Endowment Bank. All were diagnosed
to be of the α-synucleinopathy neocortical type, consistent with the clinical phenotype of
PDD, and controls did not show any features of neurodegeneration or vascular pathology.
PDD staging was assessed using either Braak staging [1] or McKeith’s typing of Lewy body
disease [47]. Individual donor data can be found in Supplementary Material A.

4.3. Pantothenic Acid Quantification

Pantothenic acid was quantified in brain extracts by UHPLC-MS/MS. Samples were
extracted into 50:50 (v/v) methanol:chloroform containing 1 µM labelled pantothenic acid
standard ((di-β-alanine-13C6, 15N2) calcium salt ≥98 atom %, ≥97% (CP); Sigma-Aldrich,
St. Louis, MO, USA). Methanol:chloroform:internal standard blanks were also prepared.
Samples were lysed in a TissueLyser batch bead homogeniser (Qiagen, Manchester, UK)
using carbamide beads. LC-MS grade water was added to lysed samples before centrifu-
gation at 2400× g for 15 min to separate polar and non-polar phases. The polar methanol
phase was transferred to a fresh tube before drying overnight in a Speedvac centrifugal
concentrator (Savant Speedvac, Thermo Scientific, Waltham, MA, USA).

Following drying, 0.1% formic acid was added to each sample and blank. This solution
was then transferred to 300 µL autosampler vials (Thermo Fisher Scientific, Waltham, MA,
USA). Four blanks containing only 0.1% (v/v) formic acid were also prepared and inter-
leaved throughout the UHPLC-MS/MS run. Standard solutions containing the labelled
pantothenic acid internal standard and unlabelled pantothenic acid external standards
(D-Pantothenic acid hemicalcium salt ≥98.0%; Sigma-Aldrich, St. Louis, MO, USA) in
0.1% formic acid were prepared in 300 µL autosampler vials containing concentrations of
0–5000 mM pantothenic acid. These were used to create calibration curves during analysis
(see Supplementary Material A). Three QC samples containing 20, 200, and 2000 mM
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unlabelled pantothenic acid standards in 0.1% (v/v) formic acid were also prepared and
interleaved throughout the run.

Pantothenic acid quantification was performed on a TSQ Vantage triple quadrupole
mass spectrometer coupled with an Accela UHPLC system (Thermo Fisher Scientific,
Waltham, MA, USA) using a Hypersil Gold AQ column with a diameter of 2.1 mm,
length of 100 mm, and particle size of 1.9 µm in reverse-phase mode (Thermo Fisher
Scientific 25302-101130, Waltham, MA, USA) and 0.5 µm pre-column filter (Thermo Fisher
Scientific 22016, Waltham, MA, USA). The column was maintained at 25 ◦C during each run.
Gradient elution was performed using 0.1% formic acid in water (A) and 0.1% formic acid
in acetonitrile (B) at 300 µL/min. Two regions were analysed per run, with randomisation
of cases and controls.

4.4. UHPLC-MS/MS Data Analysis

Peaks were identified based on the expected retention time (RT) derived by compar-
ison with the RT of the spiked pantothenic acid-labelled internal standard. Peaks were
manually checked to ensure correct identification by the software. Standards were only
accepted when showing a % difference of <15% of expected, with 6/10 standards required
for acceptance of the standard curve. QC samples showing a % difference >20% of expected
concentration were excluded, with 2/3 successful QC runs required in each batch for the
run to be accepted.

Concentrations of pantothenic acid in each sample were determined based on the
calibration curve for each region (see Supplementary Material A). Concentrations were
corrected for sample wet-weight and case–control differences analysed in GraphPad Prism
v8.1.2. (Prism; La Jolla, CA, USA). A non-parametric Mann–Whitney U test was used due
to the small sample size, and a p-value < 0.05 was considered significant. A ROC curve was
generated by combining all measurements from regions showing significant case–control
differences in pantothenic acid (SN, CB, and MED) using GraphPad Prism v8.1.2.

The minimum sample size required to confidently determine case–control differences
at a significance level of p < 0.05 was calculated using the sample size calculator from SPH
Analytics, Alpharetta, GA, USA (https://www.sphanalytics.com/sample-size-calculator-
using-average-values/, accessed on 19 February 2021).

The results obtained were compared to those previously reported in both ADD
and HD.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11090569/s1, Supplementary Material A: Table S1: Characteristics of individuals in the
PDD cohort, Table S2: Characteristics of individuals in the PDD cohort, Table S3: Statistical Power of
Pantothenic Acid Analyses, Figure S1: Pantothenic Acid Calibration Curves. Supplementary Material
B: Raw Data.
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