699 research outputs found
Motion estimation with object based regularisation
A dynamic programming based matching method for motion estimation, that optimises a Bayesian maximum likelihood function in a 3-D optimisation space, is presented. The Bayesian function consists of a matching cost and an object based 2-D regularisation cost. The method gives results more accurate than block-based matching since the motion boundaries are close to the actual object boundaries
System approach to disparity estimation
A system approach to disparity estimation using dynamic programming is presented. The four step system can calculate a dense correspondence map between a stereo pair with parallel or
nonparallel camera geometry. Results are presented with CCIR 601 format stereo images
Evaluation of four different strategies to characterize plasma membrane proteins from banana roots
Plasma membrane proteins constitute a very important class of proteins. They are involved in the transmission of external signals to the interior of the cell and selective transport of water, nutrients and ions across the plasma membrane. However, the study of plasma membrane proteins is challenging because of their poor solubility in aqueous media and low relative abundance. In this work, we evaluated four different strategies for the characterization of plasma membrane proteins from banana roots: (i) the aqueous-polymer two-phase system technique (ATPS) coupled to gelelectrophoresis (gel-based), and (ii) ATPS coupled to LC-MS/MS (gel free), (iii) a microsomal fraction and (iv) a full proteome, both coupled to LC-MS/ MS. Our results show that the gel-based strategy is useful for protein visualization but has major limitations in terms of time reproducibility and efficiency. From the gel-free strategies, the microsomal-based strategy allowed the highest number of plasma membrane proteins to be identified, followed by the full proteome strategy and by the ATPS based strategy. The high yield of plasma membrane proteins provided by the microsomal fraction can be explained by the enrichment of membrane proteins in this fraction and the high throughput of the gel-free approach combined with the usage of a fast high-resolution mass spectrometer for the identification of proteins
In vitro cryopreservation of date palm caulogenic meristems
Cryopreservation is the technology of choice not only for plant genetic resource preservation but also for virus eradication and for the efficient management of large-scale micropropagation. In this chapter, we describe three cryopreservation protocols (standard vitrification, droplet vitrification, and encapsulation vitrification) for date palm highly proliferating meristems that are initiated from vitro-cultures using plant growth regulator-free MS medium. The positive impact of sucrose preculture and cold hardening treatments on survival rates is significant. Regeneration rates obtained with standard vitrification, encapsulation-vitrification, and droplet-vitrification protocols can reach 30, 40, and 70%, respectively. All regenerated plants from non-cryopreserved or cryopreserved explants don't show morphological variation by maintaining genetic integrity without adverse effect of cryogenic treatment. Cryopreservation of date palm vitro-cultures enables commercial tissue culture laboratories to move to large-scale propagation from cryopreserved cell lines producing true-to-type plants after clonal field-testing trials. When comparing the cost of cryostorage and in-field conservation of date palm cultivars, tissue cryopreservation is the most cost-effective. Moreover, many of the risks linked to field conservation like erosion due to climatic, edaphic, and phytopathologic constraints are circumvented. (Résumé d'auteur
The European Reference Genome Atlas: piloting a decentralised approach to equitable biodiversity genomics
A global genome database of all of Earth’s species diversity could be a treasure trove of
scientific discoveries. However, regardless of the major advances in genome sequencing
technologies, only a tiny fraction of species have genomic information available. To contribute to
a more complete planetary genomic database, scientists and institutions across the world have
united under the Earth BioGenome Project (EBP), which plans to sequence and assemble
high-quality reference genomes for all ~1.5 million recognized eukaryotic species through a
stepwise phased approach. As the initiative transitions into Phase II, where 150,000 species are
to be sequenced in just four years, worldwide participation in the project will be fundamental to
success. As the European node of the EBP, the European Reference Genome Atlas (ERGA)
seeks to implement a new decentralised, accessible, equitable and inclusive model for producing
high-quality reference genomes, which will inform EBP as it scales. To embark on this mission,
ERGA launched a Pilot Project to establish a network across Europe to develop and test the first
infrastructure of its kind for the coordinated and distributed reference genome production on 98
European eukaryotic species from sample providers across 33 European countries. Here we
outline the process and challenges faced during the development of a pilot infrastructure for the
production of reference genome resources, and explore the effectiveness of this approach in
terms of high-quality reference genome production, considering also equity and inclusion. The
outcomes and lessons learned during this pilot provide a solid foundation for ERGA while
offering key learnings to other transnational and national genomic resource projects.info:eu-repo/semantics/draf
Host and environmental predictors of exhaled breath temperature in the elderly
BACKGROUND: Exhaled breath temperature has been suggested as a new method to detect and monitor pathological processes in the respiratory system. The putative mechanism of this approach is based upon changes in the blood flow. So far potential factors that influence breath temperature have not been studied in the general population. METHODS: The exhaled breath temperature was measured in 151 healthy non-smoking elderly (aged: 60–80 years) at room temperature with the X-halo device with an accuracy of 0.03°C. We related exhaled breath temperature by use of regression models with potential predictors including: host factors (sex, age) and environmental factors (BMI, physical activity, and traffic indicators). RESULTS: Exhaled breath temperature was lower in women than in men and was inversely associated with age, physical activity. BMI and daily average ambient temperature were positively associated with exhaled breath temperature. Independent of the aforementioned covariates, exhaled breath temperature was significantly associated with several traffic indicators. Residential proximity to major road was inversely associated with exhaled breath temperature: doubling the distance to the nearest major intense road was observed a decrease of 0.17°C (95% CI: -0.33 to -0.01; p = 0.036). CONCLUSIONS: Exhaled breath temperature has been suggested as a noninvasive method for the evaluation of airway inflammation. We provide evidence that several factors known to be involved in proinflammatory conditions including BMI, physical activity and residential proximity to traffic affect exhaled breath temperature. In addition, we identified potential confounders that should be taken into account in clinical and epidemiological studies on exhaled breath temperature including sex, age, and ambient temperature
- …