51 research outputs found

    MHCII-mediated dialog between group 2 innate lymphoid cells and CD4+ T cells potentiates type 2 immunity and promotes parasitic helminth expulsion

    Get PDF
    Group 2 innate lymphoid cells (ILC2s) release interleukin-13 (IL-13) during protective immunity to helminth infection and detrimentally during allergy and asthma. Using two mouse models to deplete ILC2s in vivo, we demonstrate that T helper 2 (Th2) cell responses are impaired in the absence of ILC2s. We show that MHCII-expressing ILC2s interact with antigen-specific T cells to instigate a dialog in which IL-2 production from T cells promotes ILC2 proliferation and IL-13 production. Deletion of MHCII renders IL-13-expressing ILC2s incapable of efficiently inducing Nippostrongylus brasiliensis expulsion. Thus, during transition to adaptive T cell-mediated immunity, the ILC2 and T cell crosstalk contributes to their mutual maintenance, expansion and cytokine production. This interaction appears to augment dendritic-cell-induced T cell activation and identifies a previously unappreciated pathway in the regulation of type-2 immunity

    Transcriptome and Literature Mining Highlight the Differential Expression of ERLIN1 in Immune Cells during Sepsis

    No full text
    Sepsis results from the dysregulation of the host immune system. This highly variable disease affects 19 million people globally, and accounts for 5 million deaths annually. In transcriptomic datasets curated from public repositories, we observed a consistent upregulation (3.26–5.29 fold) of ERLIN1—a gene coding for an ER membrane prohibitin and a regulator of inositol 1, 4, 5-trisphosphate receptors and sterol regulatory element-binding proteins—under septic conditions in healthy neutrophils, monocytes, and whole blood. In vitro expression of the ERLIN1 gene and proteins was measured by stimulating the whole blood of healthy volunteers to a combination of lipopolysaccharide and peptidoglycan. Septic stimulation induced a significant increase in ERLIN1 expression; however, ERLIN1 was differentially expressed among the immune blood cell subsets. ERLIN1 was uniquely increased in whole blood neutrophils, and confirmed in the differentiated HL60 cell line. The scarcity of ERLIN1 in sepsis literature indicates a knowledge gap between the functions of ERLIN1, calcium homeostasis, and cholesterol and fatty acid biosynthesis, and sepsis. In combination with experimental data, we bring forth the hypothesis that ERLIN1 is variably modulated among immune cells in response to cellular perturbations, and has implications for ER functions and/or ER membrane protein components during sepsis

    A complex of Neuroplastin and Plasma Membrane Ca2+ ATPase controls T cell activation

    No full text
    The outcome of T cell activation is determined by mechanisms that balance Ca2+ influx and clearance. Here we report that murine CD4 T cells lacking Neuroplastin (Nptn -/-), an immunoglobulin superfamily protein, display elevated cytosolic Ca2+ and impaired post-stimulation Ca2+ clearance, along with increased nuclear levels of NFAT transcription factor and enhanced T cell receptor-induced cytokine production. On the molecular level, we identified plasma membrane Ca2+ ATPases (PMCAs) as the main interaction partners of Neuroplastin. PMCA levels were reduced by over 70% in Nptn -/- T cells, suggesting an explanation for altered Ca2+ handling. Supporting this, Ca2+ extrusion was impaired while Ca2+ levels in internal stores were increased. T cells heterozygous for PMCA1 mimicked the phenotype of Nptn -/- T cells. Consistent with sustained Ca2+ levels, differentiation of Nptn -/- T helper cells was biased towards the Th1 versus Th2 subset. Our study thus establishes Neuroplastin-PMCA modules as important regulators of T cell activation

    Epigenetic and immune function profiles associated with posttraumatic stress disorder

    Get PDF
    The biologic underpinnings of posttraumatic stress disorder (PTSD) have not been fully elucidated. Previous work suggests that alterations in the immune system are characteristic of the disorder. Identifying the biologic mechanisms by which such alterations occur could provide fundamental insights into the etiology and treatment of PTSD. Here we identify specific epigenetic profiles underlying immune system changes associated with PTSD. Using blood samples (n = 100) obtained from an ongoing, prospective epidemiologic study in Detroit, the Detroit Neighborhood Health Study, we applied methylation microarrays to assay CpG sites from more than 14,000 genes among 23 PTSD-affected and 77 PTSD-unaffected individuals. We show that immune system functions are significantly overrepresented among the annotations associated with genes uniquely unmethylated among those with PTSD. We further demonstrate that genes whose methylation levels are significantly and negatively correlated with traumatic burden show a similar strong signal of immune function among the PTSD affected. The observed epigenetic variability in immune function by PTSD is corroborated using an independent biologic marker of immune response to infection, CMV—a typically latent herpesvirus whose activity was significantly higher among those with PTSD. This report of peripheral epigenomic and CMV profiles associated with mental illness suggests a biologic model of PTSD etiology in which an externally experienced traumatic event induces downstream alterations in immune function by reducing methylation levels of immune-related genes
    corecore