7,462 research outputs found

    Self-pulsation at 480 GHz from a two-color discrete mode laser diode

    Get PDF
    A discrete mode Fabry-Pérot laser is designed and fabricated to achieve two-color lasing. We demonstrate beating between the two laser modes and self-pulsation at 480 GHz

    A Group Theoretical Identification of Integrable Equations in the Li\'enard Type Equation x¨+f(x)x˙+g(x)=0\ddot{x}+f(x)\dot{x}+g(x) = 0 : Part II: Equations having Maximal Lie Point Symmetries

    Full text link
    In this second of the set of two papers on Lie symmetry analysis of a class of Li\'enard type equation of the form x¨+f(x)x˙+g(x)=0\ddot {x} + f(x)\dot {x} + g(x)= 0, where over dot denotes differentiation with respect to time and f(x)f(x) and g(x)g(x) are smooth functions of their variables, we isolate the equations which possess maximal Lie point symmetries. It is well known that any second order nonlinear ordinary differential equation which admits eight parameter Lie point symmetries is linearizable to free particle equation through point transformation. As a consequence all the identified equations turn out to be linearizable. We also show that one can get maximal Lie point symmetries for the above Li\'enard equation only when fxx=0f_{xx} =0 (subscript denotes differentiation). In addition, we discuss the linearising transformations and solutions for all the nonlinear equations identified in this paper.Comment: Accepted for publication in Journal of Mathematical Physic

    Transboundary Movement of Atlantic Istiophorid Billfishes Among International and U.S. Domestic Management Areas Inferred from Mark-Recapture Studies

    Get PDF
    Billfish movements relative to the International Commission for the Conservation of Atlantic Tunas management areas, as well as U.S. domestic data collection areas within the western North Atlantic basin, were investigated with mark-recapture data from 769 blue marlin, Makaira nigricans, 961 white marlin, Tetrapturus albidus, and 1,801 sailfish, Istiophorus platypterus. Linear displacement between release and recapture locations ranged from zero (all species) to 15,744 km (mean 575, median 119, SE 44) for blue marlin, 6,523 km (mean 719, median 216, SE 33) for white marlin, and 3,845 km (mean 294, median 98, SE 13) for sailfish. In total, 2,824 (80.0%) billfish were recaptured in the same management area of release. Days at liberty ranged from zero (all species) to 4,591 (mean 619, median 409, SE 24) for blue marlin, 5,488 (mean 692, median 448, SE 22) for white marlin, and 6,568 (mean 404, median 320, SE 11) for sailfish. The proportions (per species) of visits were highest in the Caribbean area for blue marlin and white marlin, and the Florida East Coast area for sailfish. Blue marlin and sailfish were nearly identical when comparing the percent of individuals vs. the number of areas visited. Overall, white marlin visited more areas than either blue marlin or sailfish. Seasonality was evident for all species, with overall results generally reflecting the efforts of the catch and release recreational fishing sector, particularly in the western North Atlantic. This information may be practical in reducing the uncertainties in billfish stock assessments and may offer valuable insight into management consideration of time-area closure regulations to reduce bycatch mortality of Atlantic billfishes

    Inverse scattering approach to multiwavelength Fabry-Pérot laser design

    Get PDF
    A class of multiwavelength Fabry-Pérot lasers is introduced where the spectrum is tailored through a patterning of the cavity effective index. The cavity geometry is obtained using an inverse scattering approach and can be designed such that the spacing of discrete Fabry-Pérot lasing modes is limited only by the bandwidth of the inverted gain medium. A specific two-color semiconductor laser with a mode spacing in the THz region is designed, and measurements are presented demonstrating the simultaneous oscillation of the two wavelengths. The nonperiodic effective index profile of the particular two-color device considered is shown to be related to a Moiré or superstructure grating

    VLA Observations of Candidate Supernova Remnants from the Clark Lake 30.9 MHz Galactic Plane Survey

    Get PDF
    We report the results of 1464 MHz continuum VLA observations of eight fields containing unidentified small-diameter objects associated with candidate supernova remnants from the Clark Lake 30.9 MHz galactic plane survey. The observations were made in the C configuration, giving a resolution of -12-20 arcsec, and a sensitivity of typically <0.5 mJy per beam. Polarization measurements were made as well. One of the 30.9 MHz candidates, G41.4+ 1.2, appears to be confirmed as a supernova remnant by our observations. Of the remaining seven fields observed, three were found to contain small-diameter objects which met some of the criteria for nonthermal origin, but will require further study to evaluate whether they are associated with the candidate supernova remnants. Two of the fields were found to contain groups of unresolved objects consistent with expectations for extragalactic background sources. In these cases the 30.9 MHz observations, which could not resolve the individual sources but would view them as a single extended source, may have mistakenly identified them as possible supernova remnants. Finally, two fields contained bright H II region

    Improving the Sensitivity of LISA

    Get PDF
    It has been shown in the past, that the six Doppler data streams obtained LISA configuration can be combined by appropriately delaying the data streams for cancelling the laser frequency noise. Raw laser noise is several orders of magnitude above the other noises and thus it is essential to bring it down to the level of shot, acceleration noises. A rigorous and systematic formalism using the techniques of computational commutative algebra was developed which generates all the data combinations cancelling the laser frequency noise. The relevant data combinations form a first module of syzygies. In this paper we use this formalism for optimisation of the LISA sensitivity by analysing the noise and signal covariance matrices. The signal covariance matrix, averaged over polarisations and directions, is calculated for binaries whose frequency changes at most adiabatically. We then present the extremal SNR curves for all the data combinations in the module. They correspond to the eigenvectors of the noise and signal covariance matrices. We construct LISA `network' SNR by combining the outputs of the eigenvectors which improves the LISA sensitivity substantially. The maximum SNR curve can yield an improvement upto 70 % over the Michelson, mainly at high frequencies, while the improvement using the network SNR ranges from 40 % to over 100 %. Finally, we describe a simple toy model, in which LISA rotates in a plane. In this analysis, we estimate the improvement in the LISA sensitivity, if one switches from one data combination to another as it rotates. Here the improvement in sensitivity, if one switches optimally over three cyclic data combinations of the eigenvector is about 55 % on an average over the LISA band-width. The corresponding SNR improvement is 60 %, if one maximises over the module.Comment: 16 pages, 10 figures, Submitted to Class. Quant. Gravit

    Phase resolved spectroscopy and Kepler photometry of the ultracompact AM CVn binary SDSS J190817.07+394036.4

    Get PDF
    {\it Kepler} satellite photometry and phase-resolved spectroscopy of the ultracompact AM CVn type binary SDSS J190817.07+394036.4 are presented. The average spectra reveal a variety of weak metal lines of different species, including silicon, sulphur and magnesium as well as many lines of nitrogen, beside the strong absorption lines of neutral helium. The phase-folded spectra and the Doppler tomograms reveal an S-wave in emission in the core of the He I 4471 \AA\,absorption line at a period of Porb=1085.7±2.8P_{\rm orb}=1085.7\pm2.8\,sec identifying this as the orbital period of the system. The Si II, Mg II and the core of some He I lines show an S-wave in absorption with a phase offset of 170±15170\pm15^\circ compared to the S-wave in emission. The N II, Si III and some helium lines do not show any phase variability at all. The spectroscopic orbital period is in excellent agreement with a period at Porb=1085.108(9)P_{\rm orb}=1085.108(9)\,sec detected in the three year {\it Kepler} lightcurve. A Fourier analysis of the Q6 to Q17 short cadence data obtained by {\it Kepler} revealed a large number of frequencies above the noise level where the majority shows a large variability in frequency and amplitude. In an O-C analysis we measured a P˙1.0\vert\dot{P}\vert\sim1.0\,x108\,10^{-8}\,s\,s1^{-1} for some of the strongest variations and set a limit for the orbital period to be P˙<1010\vert\dot{P}\vert<10^{-10}s\,s1^{-1}. The shape of the phase folded lightcurve on the orbital period indicates the motion of the bright spot. Models of the system were constructed to see whether the phases of the radial velocity curves and the lightcurve variation can be combined to a coherent picture. However, from the measured phases neither the absorption nor the emission can be explained to originate in the bright spot.Comment: Accepted for publication in MNRAS, 15 pages, 14 figures, 5 table

    An OSSE Search for the Binary Radio Pulsar 1259-63

    Get PDF
    We have searched data from the Oriented Scintillation Spectrometer Experiment (OSSE) on the Compton Gamma Ray Observatory (GRO) for evidence of low‐energy γ‐ray emission from the binary radio pulsar PSR1259−63. This 47 ms pulsar is in a long‐period, highly eccentric orbit around a Be stellar companion and was observed by OSSE approximately 400 days after periastron. The period derivative allowed by the published radio ephemeris (Johnston et al. 1992) suggests that the pulsar might be relatively young, and therefore a γ‐ray source. However, the ephemeris is not sufficiently accurate to allow the traditional epoch‐folding technique over the full OSSE observation. Instead, the OSSE data were analyzed using Fourier transform spectral techniques after applying trial accelerations to correct for a range of possible orbital accelerations. We searched 48 accelerations; each FFT was 2 ^2^9 points sampled at 2 ms, spanning ∼106 seconds of observation time. There was no evidence of pulsed emission in the 64–150 keV band, with a 99.9% confidence upper limit of 6×10^(−)3 photons cm^(−2) s^(−1) MeV− 1 or ∼40 m Crab pulsars, which suggests that the pulsar’s intrinsic period derivative is small and its magnetic field weak. This work was performed on the Concurrent Supercomputing Consortium’s Intel Touchstone Delta parallel supercomputer as part of a GRO Phase 1 Guest Investigation
    corecore