53,023 research outputs found

    Dynamic models of residential segregation: brief review, analytical resolution and study of the introduction of coordination

    Get PDF
    In his 1971's Dynamic Models of Segregation paper, the economist Thomas C. Schelling showed that a small preference for one's neighbors to be of the same color could lead to total segregation, even if total segregation does not correspond to individual preferences and to a residential configuration maximizing the collective utility. The present work is aimed at deepening the understanding of the properties of dynamic models of segregation based on Schelling's hypotheses. Its main contributions are (i) to offer a comprehensive and up-to-date review of this family of models; (ii) to provide an analytical solution to the most general form of this model under rather general assumptions; to the best of our knowledge, such a solution did not exist so far; (iii) to analyse the effect of two devices aimed at decreasing segregation in such a model.Comment: 52 pages, 21 figures, working pape

    The Tully-Fisher relation of distant field galaxies

    Full text link
    We examine the evolution of the Tully-Fisher relation (TFR) using a sample of 89 field spirals, with 0.1 < z < 1, for which we have measured confident rotation velocities (Vrot). By plotting the residuals from the local TFR versus redshift, or alternatively fitting the TFR to our data in several redshift bins, we find evidence that luminous spiral galaxies are increasingly offset from the local TFR with redshift, reaching a brightening of -1.0+-0.5 mag, for a given Vrot, by approximately z = 1. Since selection effects would generally increase the fraction of intrinsically-bright galaxies at higher redshifts, we argue that the observed evolution is probably an upper limit. Previous studies have used an observed correlation between the TFR residuals and Vrot to argue that low mass galaxies have evolved significantly more than those with higher mass. However, we demonstrate that such a correlation may exist purely due to an intrinsic coupling between the Vrot scatter and TFR residuals, acting in combination with the TFR scatter and restrictions on the magnitude range of the data, and therefore it does not necessarily indicate a physical difference in the evolution of galaxies with different Vrot. Finally, if we interpret the luminosity evolution derived from the TFR as due to the evolution of the star formation rate (SFR) in these luminous spiral galaxies, we find that SFR(z) is proportional to (1+z)^(1.7+-1.1), slower than commonly derived for the overall field galaxy population. This suggests that the rapid evolution in the SFR density of the universe observed since approximately z = 1 is not driven by the evolution of the SFR in individual bright spiral galaxies. (Abridged.)Comment: 14 pages, 10 figures, accepted by MNRA

    Orientational phase transitions in anisotropic rare-earth magnets at low temperatures

    Full text link
    Orientational phase transitions are investigated within the Heisenberg model with single-site anisotropy. The temperature dependence of the cone angle is calculated within the spin-wave theory. The role of the quantum renormalizations of anisotropy constants is discussed. A comparison with the experimental data on the cone-plane orientational transition in holmium is performed.Comment: 9 pages, LaTeX, 3 figure

    Generic Sandpile Models Have Directed Percolation Exponents

    Get PDF
    We study sandpile models with stochastic toppling rules and having sticky grains so that with a non-zero probability no toppling occurs, even if the local height of pile exceeds the threshold value. Dissipation is introduced by adding a small probability of particle loss at each toppling. Generically, for models with a preferred direction, the avalanche exponents are those of critical directed percolation clusters. For undirected models, avalanche exponents are those of directed percolation clusters in one higher dimension.Comment: 4 pages, 4 figures, minor change

    Self-organisation to criticality in a system without conservation law

    Full text link
    We numerically investigate the approach to the stationary state in the nonconservative Olami-Feder-Christensen (OFC) model for earthquakes. Starting from initially random configurations, we monitor the average earthquake size in different portions of the system as a function of time (the time is defined as the input energy per site in the system). We find that the process of self-organisation develops from the boundaries of the system and it is controlled by a dynamical critical exponent z~1.3 that appears to be universal over a range of dissipation levels of the local dynamics. We show moreover that the transient time of the system ttrt_{tr} scales with system size L as ttrLzt_{tr} \sim L^z. We argue that the (non-trivial) scaling of the transient time in the OFC model is associated to the establishment of long-range spatial correlations in the steady state.Comment: 10 pages, 6 figures; accepted for publication in Journal of Physics

    Constraints on Superfluid Hydrodynamics from Equilibrium Partition Functions

    Full text link
    Following up on recent work in the context of ordinary fluids, we study the equilibrium partition function of a 3+1 dimensional superfluid on an arbitrary stationary background spacetime, and with arbitrary stationary background gauge fields, in the long wavelength expansion. We argue that this partition function is generated by a 3 dimensional Euclidean effective action for the massless Goldstone field. We parameterize the general form of this action at first order in the derivative expansion. We demonstrate that the constitutive relations of relativistic superfluid hydrodynamics are significantly constrained by the requirement of consistency with such an effective action. At first order in the derivative expansion we demonstrate that the resultant constraints on constitutive relations coincide precisely with the equalities between hydrodynamical transport coefficients recently derived from the second law of thermodynamics.Comment: 46 page

    New Insights on Interstellar Gas-Phase Iron

    Full text link
    In this paper, we report on the gas-phase abundance of singly-ionized iron (Fe II) for 51 lines of sight, using data from the Far Ultraviolet Spectroscopic Explorer (FUSE). Fe II column densities are derived by measuring the equivalent widths of several ultraviolet absorption lines and subsequently fitting those to a curve of growth. Our derivation of Fe II column densities and abundances creates the largest sample of iron abundances in moderately- to highly-reddened lines of sight explored with FUSE, lines of sight that are on average more reddened than lines of sight in previous Copernicus studies. We present three major results. First, we observe the well-established correlation between iron depletion and and also find trends between iron depletion and other line of sight parameters (e.g. f(H_2), E_(B-V), and A_V), and examine the significance of these trends. Of note, a few of our lines of sight probe larger densities than previously explored and we do not see significantly enhanced depletion effects. Second, we present two detections of an extremely weak Fe II line at 1901.773 A in the archival STIS spectra of two lines of sight (HD 24534 and HD 93222). We compare these detections to the column densities derived through FUSE spectra and comment on the line's f-value and utility for future studies of Fe II. Lastly, we present strong anecdotal evidence that the Fe II f-values derived empirically through FUSE data are more accurate than previous values that have been theoretically calculated, with the probable exception of f_1112.Comment: Accepted for publication in ApJ, 669, 378; see ApJ version for small updates. 53 total pages (preprint format), 7 tables, 11 figure

    Phonon-induced quadrupolar ordering of the magnetic superconductor TmNi2_2B2_2C

    Get PDF
    We present synchrotron x-ray diffraction studies revealing that the lattice of thulium borocarbide is distorted below T_Q = 13.5 K at zero field. T_Q increases and the amplitude of the displacements is drastically enhanced, by a factor of 10 at 60 kOe, when a magnetic field is applied along [100]. The distortion occurs at the same wave vector as the antiferromagnetic ordering induced by the a-axis field. A model is presented that accounts for the properties of the quadrupolar phase and explains the peculiar behavior of the antiferromagnetic ordering previously observed in this compound.Comment: submitted to PR

    Tracking and data systems support for the Helios project. Volume 3: DSN support of Project Helios May 1976 - June 1977

    Get PDF
    Spacecraft extended mission coverage does not generally carry a high priority, but Helios was fortunate in that a combination of separated viewperiods and unique utilization of the STDN Goldstone antenna have provided a considerable amount of additional science data return, particularly at key times such a perihelion and/or solar occultation
    corecore