34 research outputs found

    Universality in the bulk of the spectrum for complex sample covariance matrices

    Get PDF
    We consider complex sample covariance matrices MN=1NYY∗M_N=\frac{1}{N}YY^* where YY is a N×pN \times p random matrix with i.i.d. entries Yij,1≀i≀N,1≀j≀pY_{ij}, 1\leq i\leq N, 1\leq j \leq p with distribution FF. Under some regularity and decay assumption on FF, we prove universality of some local eigenvalue statistics in the bulk of the spectrum in the limit where N→∞N\to \infty and lim⁥N→∞p/N=Îł\lim_{N \to \infty}p/N =\gamma for any real number γ∈(0,∞)\gamma \in (0, \infty).Comment: Typos corrected, figures and exposition improve

    Beyond universality in random matrix theory

    Full text link
    In order to have a better understanding of finite random matrices with non-Gaussian entries, we study the 1/N1/N expansion of local eigenvalue statistics in both the bulk and at the hard edge of the spectrum of random matrices. This gives valuable information about the smallest singular value not seen in universality laws. In particular, we show the dependence on the fourth moment (or the kurtosis) of the entries. This work makes use of the so-called complex Gaussian divisible ensembles for both Wigner and sample covariance matrices.Comment: Published at http://dx.doi.org/10.1214/15-AAP1129 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The largest eigenvalue of rank one deformation of large Wigner matrices

    Full text link
    The purpose of this paper is to establish universality of the fluctuations of the largest eigenvalue of some non necessarily Gaussian complex Deformed Wigner Ensembles. The real model is also considered. Our approach is close to the one used by A. Soshnikov in the investigations of classical real or complex Wigner Ensembles. It is based on the computation of moments of traces of high powers of the random matrices under consideration

    Random matrices: Universality of local eigenvalue statistics up to the edge

    Get PDF
    This is a continuation of our earlier paper on the universality of the eigenvalues of Wigner random matrices. The main new results of this paper are an extension of the results in that paper from the bulk of the spectrum up to the edge. In particular, we prove a variant of the universality results of Soshnikov for the largest eigenvalues, assuming moment conditions rather than symmetry conditions. The main new technical observation is that there is a significant bias in the Cauchy interlacing law near the edge of the spectrum which allows one to continue ensuring the delocalization of eigenvectors.Comment: 24 pages, no figures, to appear, Comm. Math. Phys. One new reference adde

    Fluctuations of Matrix Entries of Regular Functions of Wigner Matrices

    Full text link
    We study the fluctuations of the matrix entries of regular functions of Wigner random matrices in the limit when the matrix size goes to infinity. In the case of the Gaussian ensembles (GOE and GUE) this problem was considered by A.Lytova and L.Pastur in J. Stat. Phys., v.134, 147-159 (2009). Our results are valid provided the off-diagonal matrix entries have finite fourth moment, the diagonal matrix entries have finite second moment, and the test functions have four continuous derivatives in a neighborhood of the support of the Wigner semicircle law.Comment: minor corrections; the manuscript will appear in the Journal of Statistical Physic

    Local Eigenvalue Density for General MANOVA Matrices

    Get PDF
    We consider random n\times n matrices of the form (XX*+YY*)^{-1/2}YY*(XX*+YY*)^{-1/2}, where X and Y have independent entries with zero mean and variance one. These matrices are the natural generalization of the Gaussian case, which are known as MANOVA matrices and which have joint eigenvalue density given by the third classical ensemble, the Jacobi ensemble. We show that, away from the spectral edge, the eigenvalue density converges to the limiting density of the Jacobi ensemble even on the shortest possible scales of order 1/n (up to \log n factors). This result is the analogue of the local Wigner semicircle law and the local Marchenko-Pastur law for general MANOVA matrices.Comment: Several small changes made to the tex

    On the top eigenvalue of heavy-tailed random matrices

    Full text link
    We study the statistics of the largest eigenvalue lambda_max of N x N random matrices with unit variance, but power-law distributed entries, P(M_{ij})~ |M_{ij}|^{-1-mu}. When mu > 4, lambda_max converges to 2 with Tracy-Widom fluctuations of order N^{-2/3}. When mu < 4, lambda_max is of order N^{2/mu-1/2} and is governed by Fr\'echet statistics. The marginal case mu=4 provides a new class of limiting distribution that we compute explicitely. We extend these results to sample covariance matrices, and show that extreme events may cause the largest eigenvalue to significantly exceed the Marcenko-Pastur edge. Connections with Directed Polymers are briefly discussed.Comment: 4 pages, 2 figure

    Characteristic Polynomials of Sample Covariance Matrices: The Non-Square Case

    Full text link
    We consider the sample covariance matrices of large data matrices which have i.i.d. complex matrix entries and which are non-square in the sense that the difference between the number of rows and the number of columns tends to infinity. We show that the second-order correlation function of the characteristic polynomial of the sample covariance matrix is asymptotically given by the sine kernel in the bulk of the spectrum and by the Airy kernel at the edge of the spectrum. Similar results are given for real sample covariance matrices

    From interacting particle systems to random matrices

    Full text link
    In this contribution we consider stochastic growth models in the Kardar-Parisi-Zhang universality class in 1+1 dimension. We discuss the large time distribution and processes and their dependence on the class on initial condition. This means that the scaling exponents do not uniquely determine the large time surface statistics, but one has to further divide into subclasses. Some of the fluctuation laws were first discovered in random matrix models. Moreover, the limit process for curved limit shape turned out to show up in a dynamical version of hermitian random matrices, but this analogy does not extend to the case of symmetric matrices. Therefore the connections between growth models and random matrices is only partial.Comment: 18 pages, 8 figures; Contribution to StatPhys24 special issue; minor corrections in scaling of section 2.
    corecore