16 research outputs found
Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial
Background: The EMPA KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. Methods: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. Findings: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5–2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62–0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16–1·59), representing a 50% (42–58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all >0·1). Interpretation: In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. Funding: Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council
Characterization of musty odor-producing actinomycetes from tropics and effects of temperature on the production of musty odor compounds
Geosmin and 2-methylisoborneol (MIB) outbreaks in tropical water bodies, such as Southeast Asia, by actinomycetes have not yet been elucidated in detail. Six Streptomyces isolates from lowland environments in Malaysia were selected and evaluated for their odor production under different temperatures. The gene responsible for the production of geosmin, geoA, was detected in all isolates, while only two isolates harbored tpc, which is responsible for 2-MIB production. This result suggested that geosmin and 2-MIB synthesis pathway genes already existed in the environment in the Tropics of Southeast Asia. Furthermore, our isolates produced musty odor compounds at 30°C, and differences were observed in musty odor production between various temperatures. This result indicated the potential for odor episodes in water bodies of the tropical countries of Southeast Asia throughout the year due to the mean annual ambient temperature of 27°C in the lowlands
Phenotypic and genetic characterization of multidrug-resistant Staphylococcus aureus in the tropics of Southeast Asia
This paper places both the concepts of High Impact Entrepreneurship and Sustainability-as-Flourishing along with the case of Malaysia’s Ocean Thermal Energy Conversion (OTEC) Project—a national agenda mission per se—under the microscopic lens. In doing so, a series of interviews were conducted, mainly to selected developers and stakeholders of OTEC Malaysia. We illumine how OTEC Malaysia fits to become a high impact entrepreneurship assignment, and underline how the project would contribute to Sustainability-as-Flourishing in the long run. Our paper firstly introduces what high impact entrepreneurship is all about, followed by an overview of sustainability-as-flourishing as a trending concept in business and environmental researches. We then approach the OTEC model and argue how it fits both the notion of high impact entrepreneurship and sustainability-as-flourishing. Our paper concludes by affirming the potential of OTEC Malaysia and its promise of a novel hope to Malaysians, and her neighbouring nations as well
First upper limits on the radar cross section of cosmic-ray induced extensive air showers
TARA (Telescope Array Radar) is a cosmic ray radar detection experiment colocated with Telescope Array, the conventional surface scintillation detector (SD) and fluorescence telescope detector (FD) near Delta, Utah, U.S.A. The TARA detector combines a 40 kW, 54.1 MHz VHF transmitter and high-gain transmitting antenna which broadcasts the radar carrier over the SD array and within the FD field of view, towards a 250 MS/s DAQ receiver. TARA has been collecting data since 2013 with the primary goal of observing the radar signatures of extensive air showers (EAS). Simulations indicate that echoes are expected to be short in duration (similar to 10 mu s) and exhibit rapidly changing frequency, with rates on the order 1 MHz/mu s. The EAS radar cross-section (RCS) is currently unknown although it is the subject of over 70 years of speculation. A novel signal search technique is described in which the expected radar echo of a particular air shower is used as a matched filter template and compared to waveforms obtained by triggering the radar DAQ using the Telescope Array fluorescence detector. No evidence for the scattering of radio frequency radiation by EAS is obtained to date. We report the first quantitative RCS upper limits using EAS that triggered the Telescope Array Fluorescence Detector.clos
P2Y12 receptor expression is a critical determinant of functional responsiveness to ATX’s MORFO domain
In the central nervous system, the formation of the myelin sheath and the differentiation of the myelinating cells, namely oligodendrocytes, are regulated by complex signaling networks that involve purinergic receptors and the extracellular matrix. However, the exact nature of the molecular interactions underlying these networks still needs to be defined. In this respect, the data presented here reveal a signaling mechanism that is characterized by an interaction between the purinergic P2Y12 receptor and the matricellular extracellular matrix protein autotaxin (ATX), also known as ENPP2, phosphodiesterase-Iα/ATX, or lysoPLD. ATX has been previously described by us to mediate intermediate states of oligodendrocyte adhesion and to enable changes in oligodendrocyte morphology that are thought to be crucial for the formation of a fully functional myelin sheath. This functional property of ATX is mediated by ATX’s modulator of oligodendrocyte remodeling and focal adhesion organization (MORFO) domain. Here, we show that the expression of the P2Y12 receptor is necessary for ATX’s MORFO domain to exert its effects on differentiating oligodendrocytes. In addition, our data demonstrate that exogenous expression of the P2Y12 receptor can render cells responsive to the known effects of ATX’s MORFO domain, and they identify Rac1 as an intracellular factor mediating the effect of ATX-MORFO-P2Y12 signaling on the assembly of focal adhesions. Our data further support the idea that a physical interaction between ATX and the P2Y12 receptor provides the basis for an ATX-MORFO-P2Y12 signaling axis that is crucial for mediating cellular states of intermediate adhesion and morphological/structural plasticity