45 research outputs found

    Plectin as a prognostic marker in non-metastatic oral squamous cell carcinoma

    Get PDF
    Background: Oral squamous cell carcinoma (OSCC) is associated with a poor 5-year survival rate. In general, patients diagnosed with small tumors have a fairly good prognosis, but some small tumors have an aggressive behavior leading to early death. There are at present no reliable prognostic biomarkers for oral cancers. Thus, to optimize treatment for the individual patient, there is a need for biomarkers that can predict tumor behavior. Method: In the present study the potential prognostic value of plectin was evaluated by a tissue microarray (TMA) based immunohistochemical analysis of primary tumor tissue obtained from a North Norwegian cohort of 115 patients diagnosed with OSCC. The expression of plectin was compared with clinicopathological variables and 5 year survival. Results: The statistical analysis revealed that low expression of plectin in the tumor cells predicted a favorable outcome for patients with non-metastatic disease (p = 0.008). Furthermore, the expression of plectin was found to correlate (p = 0.01) with the expression of uPAR, which we have previously found to be a potential prognostic marker for T1N0 tumors. Conclusions: Our results indicate that low expression of plectin predicts a favorable outcome for patients with non-metastatic OSCC and the expression level of plectin may therefore be used in the treatment stratification for patients with early stage disease

    Molecular architecture and function of the hemidesmosome

    Get PDF

    Molecular insights into the premature aging disease progeria

    Get PDF

    Molecular architecture and function of the hemidesmosome

    Get PDF

    Mechanosensing through focal adhesion-anchored intermediate filaments.

    No full text
    Integrin-based mechanotransduction involves a complex focal adhesion (FA)-associated machinery that is able to detect and respond to forces exerted either through components of the extracellular matrix or the intracellular contractile actomyosin network. Here, we show a hitherto unrecognized regulatory role of vimentin intermediate filaments (IFs) in this process. By studying fibroblasts in which vimentin IFs were decoupled from FAs, either because of vimentin deficiency (V0) or loss of vimentin network anchorage due to deficiency in the cytolinker protein plectin (P0), we demonstrate attenuated activation of the major mechanosensor molecule FAK and its downstream targets Src, ERK1/2, and p38, as well as an up-regulation of the compensatory feedback loop acting on RhoA and myosin light chain. In line with these findings, we show strongly reduced FA turnover rates in P0 fibroblasts combined with impaired directional migration, formation of protrusions, and up-regulation of "stretched" high-affinity integrin complexes. By exploiting tension-independent conditions, we were able to mechanistically link these defects to diminished cytoskeletal tension in both P0 and V0 cells. Our data provide important new insights into molecular mechanisms underlying cytoskeleton-regulated mechanosensing, a feature that is fundamental for controlled cell movement and tumor progression

    Targeted ablation of plectin isoform 1 uncovers role of cytolinker proteins in leukocyte recruitment

    No full text
    Plectin, a typical cytolinker protein, is essential for skin and skeletal muscle integrity. It stabilizes cells mechanically, regulates cytoskeleton dynamics, and serves as a scaffolding platform for signaling molecules. A variety of isoforms expressed in different tissues and cell types account for this versatility. To uncover the role of plectin 1, the major isoform expressed in tissues of mesenchymal origin, against the background of all other variants, we raised plectin isoform 1-specific antibodies and generated isoform-deficient mice. In contrast to plectin-null mice (lacking all plectin isoforms), which die shortly after birth because of severe skin blistering, plectin isoform 1-deficient mice were viable at birth, had a normal lifespan, and did not display the skin blistering phenotype. However, dermal fibroblasts isolated from plectin 1-deficient mice exhibited abnormalities in their actin cytoskeleton and impaired migration potential. Similarly, plectin 1-deficient T cells isolated from nymph nodes showed diminished chemotactic migration in vitro. Most strikingly, in vivo we found that leukocyte infiltration during wound healing was reduced in the mutant mice. These data show a specific role of a cytolinker protein in immune cell motility. Single isoform-deficient mice thus represent a powerful tool to unravel highly specific functions of plectin variants
    corecore