1,329 research outputs found
Unusual superexchange pathways in a Ni triangular lattice of NiGaS with negative charge-transfer energy
We have studied the electronic structure of the Ni triangular lattice in
NiGaS using photoemission spectroscopy and subsequent model
calculations. The cluster-model analysis of the Ni 2 core-level spectrum
shows that the S 3 to Ni 3 charge-transfer energy is -1 eV and the
ground state is dominated by the configuration ( is a S 3 hole).
Cell perturbation analysis for the NiS triangular lattice indicates that
the strong S 3 hole character of the ground state provides the enhanced
superexchange interaction between the third nearest neighbor sites.Comment: 10 pages, 5 figures, accepted to PR
THz Wave Propagation on Strip Lines: Devices, Properties, and Applications
We report the propagation characteristics of THz pulses on micro-strip-lines and coplanar strip-lines, in which low permittivity polymer materials are used as the dielectric layer or the substrate. As a result of the low attenuation and small dispersion in the devices, the spectral width up to 3 THz can be achieved even after the 1 mm propagation. Spectroscopic characterizations of liquid or powder specimens are demonstrated using the devices. We also show a possibility of realizing a very low attenuation using a quadrupole mode in three strip coplanar lines on the polymer substrate
Echogenicity as a surrogate for bioresorbable everolimus-eluting scaffold degradation: analysis at 1-, 3-, 6-, 12- 18, 24-, 30-, 36- and 42-month follow-up in a porcine model
The objective of the study is to validate intravascular quantitative echogenicity as a surrogate for molecular weight assessment of poly-l-lactide-acid (PLLA) bioresorbable scaffold (Absorb BVS, Abbott Vascular, Santa Clara, California). We analyzed at 9 time points (from 1- to 42-month follow-up) a population of 40 pigs that received 97 Absorb scaffolds. The treated regions were analyzed by echogenicity using adventitia as reference, and were categorized as more (hyperechogenic or upperechogenic) or less bright (hypoechogenic) than the reference. The volumes of echogenicity categories were correlated with the measurements of molecular weight (Mw) by gel permeation chromatography. Scaffold struts appeared as high echogenic structures. The quantification of grey level intensity in the scaffold-vessel compartment had strong correlation with the scaffold Mw: hyperechogenicity (correlation coefficient = 0.75; P < 0.01), upperechogenicity (correlation coefficient = 0.63; P < 0.01) and hyper + upperechogenicity (correlation coefficient = 0.78; P < 0.01). In the linear regression, the R2 for high echogenicity and Mw was 0.57 for the combination of hyper and upper echogenicity. IVUS high intensity grey level quantification is correlated to Absorb BVS residual molecular weight and can be used as a surrogate for the monitoring of the degradation of semi-crystalline polymers scaffolds
Strut protrusion and shape impact on endothelial shear stress: insights from pre-clinical study comparing Mirage and Absorb bioresorbable scaffolds
Protrusion of scaffold struts is related with local coronary flow dynamics that can promote scaffold restenosis and thrombosis. That fact has prompted us to investigate in vivo the protrusion status of different types of scaffolds and their relationship with endothelial shear stress (ESS) distributions. Six Absorb everolimus-eluting Bioresorbable Vascular Scaffolds (Absorb, Abbott Vascular) and 11 Mirage sirolimus-eluting Bioresorbable Microfiber Scaffolds (Mirage, Manli Cardiology) were implanted in coronaries of eight mini pigs. Optical coherence tomography (OCT) was performed post-scaffold implantation and obtained images were fused with angiographic data to reconstruct the three dimensional coronary anatomy. Blood flow simulation was performed and ESS distribution was estimated for each scaffold. Protrusion distance was estimated using a dedicated software. Correlation between OCT-derived protrusion and ESS distribution was assessed for both scaffold groups. A significant difference was observed in the protrusion distances (156 ± 137 µm for Absorb, 139 ± 153 µm for Mirage; p = 0.035), whereas difference remained after adjusting the protrusion distances according to the luminal areas. Strut protrusion of Absorb is inversely correlated with ESS (r = -0.369, p < 0.0001), whereas in Mirage protrusion was positively correlated with EES (r = 0.192, p < 0.0001). Protrusion distance was higher in Absorb than in Mirage. The protrusion of the thick quadratic struts of Absorb has a tendency to lower shear stress in the close vicinity of struts. However, circular shape of the less thick struts of Mirage didn't show this trend in creating zone of recirculation around the struts. Strut geometry has different effect on the relationship between protrusion and shear stress in Absorb and Mirage scaffolds
Observation of PeV Gamma Rays from the Monogem Ring with the Tibet Air Shower Array
We searched for steady PeV gamma-ray emission from the Monogem ring region
with the Tibet air shower array from 1997 February to 2004 October. No evidence
for statistically significant gamma-ray signals was found in a region
111\degr R.A. 114\degr, 12\fdg5 decl. 15\fdg5 in
the Monogem ring where the MAKET-ANI experiment recently claimed a positive
detection of PeV high-energy cosmic radiation, although our flux sensitivity is
approximately 10 times better than MAKET-ANI's. We set the most stringent
integral flux upper limit at a 99% confidence level of 4.0 10
cm s sr above 1 PeV on diffuse gamma rays extended in the
3 3 region.Comment: 13 pages 3figures, 1 tabl
The energy spectrum of all-particle cosmic rays around the knee region observed with the Tibet-III air-shower array
We have already reported the first result on the all-particle spectrum around
the knee region based on data from 2000 November to 2001 October observed by
the Tibet-III air-shower array. In this paper, we present an updated result
using data set collected in the period from 2000 November through 2004 October
in a wide range over 3 decades between eV and eV, in which
the position of the knee is clearly seen at around 4 PeV. The spectral index is
-2.68 0.02(stat.) below 1PeV, while it is -3.12 0.01(stat.) above 4
PeV in the case of QGSJET+HD model, and various systematic errors are under
study now.Comment: 12 pages, 7 figures, accepted by Advances in space researc
The all-particle spectrum of primary cosmic rays in the wide energy range from 10^14 eV to 10^17 eV observed with the Tibet-III air-shower array
We present an updated all-particle energy spectrum of primary cosmic rays in
a wide range from 10^14 eV to 10^17 eV using 5.5 times 10^7 events collected in
the period from 2000 November through 2004 October by the Tibet-III air-shower
array located at 4300 m above sea level (atmospheric depth of 606 g/cm^2). The
size spectrum exhibits a sharp knee at a corresponding primary energy around 4
PeV. This work uses increased statistics and new simulation calculations for
the analysis. We performed extensive Monte Carlo calculations and discuss the
model dependences involved in the final result assuming interaction models of
QGSJET01c and SIBYLL2.1 and primary composition models of heavy dominant (HD)
and proton dominant (PD) ones. Pure proton and pure iron primary models are
also examined as extreme cases. The detector simulation was also made to
improve the accuracy of determining the size of the air showers and the energy
of the primary particle. We confirmed that the all-particle energy spectra
obtained under various plausible model parameters are not significantly
different from each other as expected from the characteristics of the
experiment at the high altitude, where the air showers of the primary energy
around the knee reaches near maximum development and their features are
dominated by electromagnetic components leading to the weak dependence on the
interaction model or the primary mass. This is the highest-statistical and the
best systematics-controlled measurement covering the widest energy range around
the knee energy region.Comment: 19 pages, 20 figures, accepted by Ap
Quantitative plane-resolved crystal growth and dissolution kinetics by coupling in situ optical microscopy and diffusion models : the case of salicylic acid in aqueous solution
The growth and dissolution kinetics of salicylic acid crystals are investigated in situ by focusing on individual microscale crystals. From a combination of optical microscopy and finite element method (FEM) modeling, it was possible to obtain a detailed quantitative picture of dissolution and growth dynamics for individual crystal faces. The approach uses real-time in situ growth and dissolution data (crystal size and shape as a function of time) to parametrize a FEM model incorporating surface kinetics and bulk to surface diffusion, from which concentration distributions and fluxes are obtained directly. It was found that the (001) face showed strong mass transport (diffusion) controlled behavior with an average surface concentration close to the solubility value during growth and dissolution over a wide range of bulk saturation levels. The (1̅10) and (110) faces exhibited mixed mass transport/surface controlled behavior, but with a strong diffusive component. As crystals became relatively large, they tended to exhibit peculiar hollow structures in the end (001) face, observed by interferometry and optical microscopy. Such features have been reported in a number of crystals, but there has not been a satisfactory explanation for their origin. The mass transport simulations indicate that there is a large difference in flux across the crystal surface, with high values at the edge of the (001) face compared to the center, and this flux has to be redistributed across the (001) surface. As the crystal grows, the redistribution process evidently can not be maintained so that the edges grow at the expense of the center, ultimately creating high index internal structures. At later times, we postulate that these high energy faces, starved of material from solution, dissolve and the extra flux of salicylic acid causes the voids to close
Observation by an Air-Shower Array in Tibet of the Multi-TeV Cosmic-Ray Anisotropy due to Terrestrial Orbital Motion Around the Sun
We report on the solar diurnal variation of the galactic cosmic-ray intensity
observed by the Tibet III air shower array during the period from 1999 to 2003.
In the higher-energy event samples (12 TeV and 6.2 TeV), the variations are
fairly consistent with the Compton-Getting anisotropy due to the terrestrial
orbital motion around the sun, while the variation in the lower-energy event
sample (4.0 TeV) is inconsistent with this anisotropy. This suggests an
additional anisotropy superposed at the multi-TeV energies, e.g. the solar
modulation effect. This is the highest-precision measurement of the
Compton-Getting anisotropy ever made.Comment: 4 pages, 2 figures, includes .bbl fil
- …
