286 research outputs found
Charging and coagulation of dust in protoplanetary plasma environments
Combining a particle-particle, particle-cluster and cluster-cluster
agglomeration model with an aggregate charging model, the coagulation and
charging of dust particles in various plasma environments relevant for
proto-planetary disks have been investigated. The results show that charged
aggregates tend to grow by adding small particles and clusters to larger
particles and clusters, leading to greater sizes and masses as compared to
neutral aggregates, for the same number of monomers in the aggregate. In
addition, aggregates coagulating in a Lorentzian plasma (containing a larger
fraction of high-energy plasma particles) are more massive and larger than
aggregates coagulating in a Maxwellian plasma, for the same plasma densities
and characteristic temperature. Comparisons of the grain structure, utilizing
the compactness factor, {\phi}{\sigma}, demonstrate that a Lorentzian plasma
environment results in fluffier aggregates, with small {\phi}{\sigma}, which
exhibit a narrow compactness factor distribution. Neutral aggregates are more
compact, with larger {\phi}{\sigma}, and exhibit a larger variation in
fluffiness. Measurement of the compactness factor of large populations of
aggregates is shown to provide information on the disk parameters that were
present during aggregation
Quasinormal ringing of acoustic black holes in Laval nozzles: Numerical simulations
Quasinormal ringing of acoustic black holes in Laval nozzles is discussed.
The equation for sounds in a transonic flow is written into a
Schr\"{o}dinger-type equation with a potential barrier, and the quasinormal
frequencies are calculated semianalytically. From the results of numerical
simulations, it is shown that the quasinormal modes are actually excited when
the transonic flow is formed or slightly perturbed, as well as in the real
black hole case. In an actual experiment, however, the purely-outgoing boundary
condition will not be satisfied at late times due to the wave reflection at the
end of the apparatus, and a late-time ringing will be expressed as a
superposition of "boxed" quasinormal modes. It is shown that the late-time
ringing damps more slowly than the ordinary quasinormal ringing, while its
central frequency is not greatly different from that of the ordinary one. Using
this fact, an efficient way for experimentally detecting the quasinormal
ringing of an acoustic black hole is discussed.Comment: 9 pages, 8 figures, accepted for publication in Physical Review
Candidate Water Vapor Lines to Locate the H2O Snowline through High-dispersion Spectroscopic Observations. III. Submillimeter H2 16O and H2 18O Lines
In this paper, we extend the results presented in our former papers on using ortho-H216O line profiles to constrain the location of the H2O snowline in T Tauri and Herbig Ae disks, to include submillimeter para-H216O and ortho- and para-H218O lines. Since the number densities of the ortho- and para-H218O molecules are about 560 times smaller than their 16O analogs, they trace deeper into the disk than the ortho-H216O lines (down to z = 0, i.e., the midplane). Thus these H218O lines are potentially better probes of the position of the H2O snowline at the disk midplane, depending on the dust optical depth. The values of the Einstein A coefficients of submillimeter candidate water lines tend to be lower (typically <10‑4 s‑1) than infrared candidate water lines. Thus in the submillimeter candidate water line cases, the local intensity from the outer optically thin region in the disk is around 104 times smaller than that in the infrared candidate water line cases. Therefore, in the submillimeter lines, especially H218O and para-H216O lines with relatively lower upper state energies (∼a few 100 K) can also locate the position of the H2O snowline. We also investigate the possibility of future observations with ALMA to identify the position of the water snowline. There are several candidate water lines that trace the hot water gas inside the H2O snowline in ALMA Bands 5–10
ALMA Observations of a Gap and a Ring in the Protoplanetary Disk around TW Hya
We report the first detection of a gap and a ring in 336 GHz dust continuum emission from the protoplanetary disk around TW Hya, using the Atacama Large Millimeter/Submillimeter Array (ALMA). The gap and ring are located at around 25 and 41 au from the central star, respectively, and are associated with the CO snow line at ∼30 au. The gap has a radial width of less than 15 au and a mass deficit of more than 23%, taking into account that the observations are limited to an angular resolution of ∼15 au. In addition, the 13CO and C18O J=3-2 lines show a decrement in CO line emission throughout the disk, down to ∼10 au, indicating a freeze-out of gas-phase CO onto grain surfaces and possible subsequent surface reactions to form larger molecules. The observed gap could be caused by gravitational interaction between the disk gas and a planet with a mass less than super-Neptune (2{M}{{Neptune}}), or could be the result of the destruction of large dust aggregates due to the sintering of CO ice
A Gap with a Deficit of Large Grains in the Protoplanetary Disk around TW Hya
We report ∼3 au resolution imaging observations of the protoplanetary disk around TW Hya at 145 and 233 GHz with the Atacama Large Millimeter/submillimeter Array. Our observations revealed two deep gaps (∼25%-50%) at 22 and 37 au and shallower gaps (a few percent) at 6, 28, and 44 au, as recently reported by Andrews et al. The central hole with a radius of ∼3 au was also marginally resolved. The most remarkable finding is that the spectral index α(R) between bands 4 and 6 peaks at the 22 au gap. The derived power-law index of the dust opacity β(R) is ∼1.7 at the 22 au gap and decreases toward the disk center to ∼0. The most prominent gap at 22 au could be caused by the gravitational interaction between the disk and an unseen planet with a mass of ≲1.5 M Neptune, although other origins may be possible. The planet-induced gap is supported by the fact that β(R) is enhanced at the 22 au gap, indicating a deficit of ∼millimeter-sized grains within the gap due to dust filtration by a planet
GLOBAL SIMULATIONS OF PROTOPLANETARY DISKS WITH OHMIC RESISTIVITY AND AMBIPOLAR DIFFUSION
Protoplanetary disks are believed to accrete onto their central T Tauri star
because of magnetic stresses. Recently published shearing box simulations
indicate that Ohmic resistivity, ambipolar diffusion and the Hall effect all
play important roles in disk evolution. In the presence of a vertical magnetic
field, the disk remains laminar between 1-5au, and a magnetocentrifugal disk
wind forms that provides an important mechanism for removing angular momentum.
Questions remain, however, about the establishment of a true physical wind
solution in the shearing box simulations because of the symmetries inherent in
the local approximation. We present global MHD simulations of protoplanetary
disks that include Ohmic resistivity and ambipolar diffusion, where the
time-dependent gas-phase electron and ion fractions are computed under FUV and
X-ray ionization with a simplified recombination chemistry. Our results show
that the disk remains laminar, and that a physical wind solution arises
naturally in global disk models. The wind is sufficiently efficient to explain
the observed accretion rates. Furthermore, the ionization fraction at
intermediate disk heights is large enough for magneto-rotational channel modes
to grow and subsequently develop into belts of horizontal field. Depending on
the ionization fraction, these can remain quasi-global, or break-up into
discrete islands of coherent field polarity. The disk models we present here
show a dramatic departure from our earlier models including Ohmic resistivity
only. It will be important to examine how the Hall effect modifies the
evolution, and to explore the influence this has on the observational
appearance of such systems, and on planet formation and migration.Comment: 18 pages, 12 figures, accepted for publication in Ap
Imaging the water snow-line during a protostellar outburst
A snow-line is the region of a protoplanetary disk at which a major volatile, such as water or carbon monoxide, reaches its condensation temperature. Snow-lines play a crucial role in disk evolution by promoting the rapid growth of ice-covered grains^1, 2, 3, 4, 5, 6. Signatures of the carbon monoxide snow-line (at temperatures of around 20 kelvin) have recently been imaged in the disks surrounding the pre-main-sequence stars TW Hydra^7, 8, 9 and HD163296 (refs 3, 10), at distances of about 30 astronomical units (au) from the star. But the water snow-line of a protoplanetary disk (at temperatures of more than 100 kelvin) has not hitherto been seen, as it generally lies very close to the star (less than 5 au away for solar-type stars^11). Water-ice is important because it regulates the efficiency of dust and planetesimal coagulation5, and the formation of comets, ice giants and the cores of gas giants^12. Here we report images at 0.03-arcsec resolution (12 au) of the protoplanetary disk around V883 Ori, a protostar of 1.3 solar masses that is undergoing an outburst in luminosity arising from a temporary increase in the accretion rate^13. We find an intensity break corresponding to an abrupt change in the optical depth at about 42 au, where the elevated disk temperature approaches the condensation point of water, from which we conclude that the outburst has moved the water snow-line. The spectral behaviour across the snow-line confirms recent model predictions^14: dust fragmentation and the inhibition of grain growth at higher temperatures results in soaring grain number densities and optical depths. As most planetary systems are expected to experience outbursts caused by accretion during their formation^15, 16, our results imply that highly dynamical water snow-lines must be considered when developing models of disk evolution and planet formation
- …