77 research outputs found
Endogenous chemical exchange saturation transfer (CEST) MR imaging for the diagnosis and therapy response assessment of brain tumors: A systematic review
Purpose: To generate a narrative synthesis of published data on the use of endogenous
chemical exchange saturation transfer (CEST) MR imaging in brain tumors.
Materials and Methods: A systematic database search (PubMed, Ovid Embase, Cochrane
Library) was used to collate eligible studies. Two researchers independently screened
publications according to predefined exclusion and inclusion criteria, followed by
comprehensive data extraction. All included studies were subjected to a bias risk assessment
using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool.
Results: The electronic database search identified 430 studies, of which 36 studies fulfilled
the inclusion criteria. The final selection of included studies was categorized into 5 groups as
follows: grading gliomas, 19 studies (areas under the curve (AUC) 0.500-1.000); predicting
molecular subtypes of gliomas, 5 studies (AUC 0.610-0.920); distinction of different brain
tumor types, 7 studies (AUC 0.707-0.905); therapy response assessment, 3 studies (AUC not
given) and differentiating recurrence from treatment-related changes, 5 studies (AUC 0.880-
0.980). A high bias risk was observed in a substantial proportion of studies.
Conclusion: Endogenous CEST imaging offers valuable, potentially unique information in
brain tumors, but its diagnostic accuracy remains incompletely known. Further research is
required to assess the method’s role in support of molecular genetic diagnosis, to investigate
its use in the post treatment phase, and to compare techniques with a view to standardization
Imaging characteristics of H3 K27M histone-mutant diffuse midline glioma in teenagers and adults
Background: To assess anatomical and quantitative diffusion-weighted MR imaging features in a recently classified lethal neoplasm, H3 K27M histone-mutant diffuse midline glioma [World Health Organization (WHO) IV]. /
Methods: Fifteen untreated gliomas in teenagers and adults (median age 19, range, 14–64) with confirmed H3 K27M histone-mutant genotype were analysed at a national referral centre. Morphological characteristics including tumour epicentre(s), T2/FLAIR and Gadolinium enhancement patterns, calcification, haemorrhage and cyst formation were recorded. Multiple apparent diffusion coefficient (ADCmin, ADCmean) regions of interest were sited in solid tumour and normal appearing white matter (ADCNAWM) using post-processing software (Olea Sphere v2.3, Olea Medical). ADC histogram data (2nd, 5th, 10th percentile, median, mean, kurtosis, skewness) were calculated from volumetric tumour segmentations and tested against the regions of interest (ROI) data (Wilcoxon signed rank test). /
Results: The median interval from imaging to tissue diagnosis was 9 (range, 0–74) days. The structural MR imaging findings varied between individuals and within tumours, often featuring signal heterogeneity on all MR sequences. All gliomas demonstrated contact with the brain midline, and 67% exhibited rim-enhancing necrosis. The mean ROI ADCmin value was 0.84 (±0.15 standard deviation, SD) ×10−3 mm2/s. In the largest tumour cross-section (excluding necrosis), an average ADCmean value of 1.12 (±0.25)×10−3 mm2/s was observed. The mean ADCmin/NAWM ratio was 1.097 (±0.149), and the mean ADCmean/NAWM ratio measured 1.466 (±0.299). With the exception of the 2nd centile, no statistical difference was observed between the regional and histogram derived ADC results. /
Conclusions: H3 K27M-mutant gliomas demonstrate variable morphology and diffusivity, commonly featuring moderately low ADC values in solid tumour. Regional ADC measurements appeared representative of volumetric histogram data in this study
World Health Organization Grade II/III Glioma Molecular Status: Prediction by MRI Morphologic Features and Apparent Diffusion Coefficient
BACKGROUND: A readily implemented MRI biomarker for glioma genotyping is currently lacking. PURPOSE: To evaluate clinically available MRI parameters for predicting isocitrate dehydrogenase (IDH) status in patients with glioma. MATERIALS AND METHODS: In this retrospective study of patients studied from July 2008 to February 2019, untreated World Health Organization (WHO) grade II/III gliomas were analyzed by three neuroradiologists blinded to tissue results. Apparent diffusion coefficient (ADC) minimum (ADC_{mi}) and mean (ADC_{mean}) regions of interest were defined in tumor and normal appearing white matter (ADC_{NAWM}). visual rating of anatomic features (T1 weighted, T1 weighted with contrast enhancement, T2 weighted, and fluid-attenuated inversion recovery) was performed. Interobserver comparison (intraclass correlation coefficient and Cohen κ) was followed by nonparametric (Kruskal-Wallis analysis of variance) testing of associations between ADC metrics and glioma genotypes, including Bonferroni correction for multiple testing. Descriptors with sufficient concordance (intraclass correlation coefficient, >0.8; κ > 0.6) underwent univariable analysis. Predictive variables (P < .05) were entered into a multivariable logistic regression and tested in an additional test sample of patients with glioma. RESULTS: he study included 290 patients (median age, 40 years; interquartile range, 33–52 years; 169 male patients) with 82 IDH wild-type, 107 IDH mutant/1p19q intact, and 101 IDH mutant/1p19q codeleted gliomas. Two predictive models incorporating ADC_{mean}-to-ADC_{NAWM} ratio, age, and morphologic characteristics, with model A mandating calcification result and model B recording cyst formation, classified tumor type with areas under the receiver operating characteristic curve of 0.94 (95% confidence interval [CI]: 0.91, 0.97) and 0.96 (95% CI: 0.93, 0.98), respectively. In the test sample of 49 gliomas (nine IDH wild type, 21 IDH mutant/1p19q intact, and 19 IDH mutant/1p19q codeleted), the classification accuracy was 40 of 49 gliomas (82%; 95% CI: 71%, 92%) for model A and 42 of 49 gliomas (86%; 95% CI: 76%, 96%) for model B. CONCLUSION: Two algorithms that incorporated apparent diffusion coefficient values, age, and tumor morphologic characteristics predicted isocitrate dehydrogenase status in World Health Organization grade II/III gliomas on the basis of standard clinical MRI sequences alone
Space efficient opposed-anvil high-pressure cell and its application to optical and NMR measurements up to 9 GPa
We have developed a new type of opposed-anvil high pressure cell with
substantially improved space efficiency. The clamp cell and the gasket are made
of non-magnetic Ni-Cr-Al alloy. Non-magnetic tungsten carbide (NMWC) is used
for the anvils. The assembled cell with the dimension \phi 29mm \times 41mm is
capable of generating pressure up to 9 GPa over a relatively large volume of 7
mm3. Our cell is particularly suitable for those experiments which require
large sample space to achieve good signal-to-noise ratio, such as the nuclear
magnetic resonance (NMR) experiment. Argon is used as the pressure transmitting
medium to obtain good hydrostaticity. The pressure was calibrated in situ by
measuring the fluorescence from ruby through a transparent moissanite (6H-SiC)
window. We have measured the pressure and temperature dependences of the 63Cu
nuclear-quadrupole-resonance (NQR) frequency of Cu2O, the in-plane Knight shift
of metallic tin, and the Knight shift of platinum. These quantities can be used
as reliable manometers to determine the pressure values in situ during the
NMR/NQR experiments up to 9 GPa.Comment: 9 pages, 5 figures, 3 tables, accepted for publication in J. Phys.
Soc. Jp
Making the Earth: Combining Dynamics and Chemistry in the Solar System
No terrestrial planet formation simulation completed to date has considered
the detailed chemical composition of the planets produced. While many have
considered possible water contents and late veneer compositions, none have
examined the bulk elemental abundances of the planets produced as an important
check of formation models. Here we report on the first study of this type. Bulk
elemental abundances based on disk equilibrium studies have been determined for
the simulated terrestrial planets of O'Brien et al. (2006). These abundances
are in excellent agreement with observed planetary values, indicating that the
models of O'Brien et al. (2006) are successfully producing planets comparable
to those of the Solar System in terms of both their dynamical and chemical
properties. Significant amounts of water are accreted in the present
simulations, implying that the terrestrial planets form "wet" and do not need
significant water delivery from other sources. Under the assumption of
equilibrium controlled chemistry, the biogenic species N and C still need to be
delivered to the Earth as they are not accreted in significant proportions
during the formation process. Negligible solar photospheric pollution is
produced by the planetary formation process. Assuming similar levels of
pollution in other planetary systems, this in turn implies that the high
metallicity trend observed in extrasolar planetary systems is in fact
primordial.Comment: 61 pages (including online material), 12 figures (7 in paper, 5
online). Accepted to Icaru
Diagnostic accuracy of dynamic contrast-enhanced perfusion MRI in stratifying gliomas: A systematic review and meta-analysis
Background
T1‐weighted dynamic contrast‐enhanced (DCE) perfusion magnetic resonance imaging (MRI) has been broadly utilized in the evaluation of brain tumors. We aimed at assessing the diagnostic accuracy of DCE‐MRI in discriminating between low‐grade gliomas (LGGs) and high‐grade gliomas (HGGs), between tumor recurrence and treatment‐related changes, and between primary central nervous system lymphomas (PCNSLs) and HGGs.
Methods
We performed this study based on the Preferred Reporting Items for Systematic Reviews and Meta‐Analysis of Diagnostic Test Accuracy Studies criteria. We systematically surveyed studies evaluating the diagnostic accuracy of DCE‐MRI for the aforementioned entities. Meta‐analysis was conducted with the use of a random effects model.
Results
Twenty‐seven studies were included after screening of 2945 possible entries. We categorized the eligible studies into three groups: those utilizing DCE‐MRI to differentiate between HGGs and LGGs (14 studies, 546 patients), between recurrence and treatment‐related changes (9 studies, 298 patients) and between PCNSLs and HGGs (5 studies, 224 patients). The pooled sensitivity, specificity, and area under the curve for differentiating HGGs from LGGs were 0.93, 0.90, and 0.96, for differentiating tumor relapse from treatment‐related changes were 0.88, 0.86, and 0.89, and for differentiating PCNSLs from HGGs were 0.78, 0.81, and 0.86, respectively.
Conclusions
Dynamic contrast‐enhanced‐Magnetic resonance imaging is a promising noninvasive imaging method that has moderate or high accuracy in stratifying gliomas. DCE‐MRI shows high diagnostic accuracy in discriminating between HGGs and their low‐grade counterparts, and moderate diagnostic accuracy in discriminating recurrent lesions and treatment‐related changes as well as PCNSLs and HGGs
Indirect monitoring shot-to-shot shock waves strength reproducibility during pump-probe experiments
We present an indirect method of estimating the strength of a shock wave, allowing on line monitoring of its reproducibility in each laser shot. This method is based on a shot-to-shot measurement of the X-ray emission from the ablated plasma by a high resolution, spatially resolved focusing spectrometer. An optical pump laser with energy of 1.0 J and pulse duration of ∼660 ps was used to irradiate solid targets or foils with various thicknesses containing Oxygen, Aluminum, Iron, and Tantalum. The high sensitivity and resolving power of the X-ray spectrometer allowed spectra to be obtained on each laser shot and to control fluctuations of the spectral intensity emitted by different plasmas with an accuracy of ∼2%, implying an accuracy in the derived electron plasma temperature of 5%-10% in pump-probe high energy density science experiments. At nano- and sub-nanosecond duration of laser pulse with relatively low laser intensities and ratio Z/A ∼ 0.5, the electron temperature follows Te ∼ Ilas2/3. Thus, measurements of the electron plasma temperature allow indirect estimation of the laser flux on the target and control its shot-to-shot fluctuation. Knowing the laser flux intensity and its fluctuation gives us the possibility of monitoring shot-to-shot reproducibility of shock wave strength generation with high accuracy.T. A. Pikuz, A. Ya. Faenov, N. Ozaki, N. J. Hartley, B. Albertazzi, T. Matsuoka, K. Takahashi, H. Habara, Y. Tange, S. Matsuyama, K. Yamauchi, R. Ochante, K. Sueda, O. Sakata, T. Sekine, T. Sato, Y. Umeda, Y. Inubushi, T. Yabuuchi, T. Togashi, T. Katayama, M. Yabashi, M. Harmand, G. Morard, M. Koenig, V. Zhakhovsky, N. Inogamov, A. S. Safronova, A. Stafford, I. Yu. Skobelev, S. A. Pikuz, T. Okuchi, Y. Seto, K. A. Tanaka, T. Ishikawa, and R. Kodama, "Indirect monitoring shot-to-shot shock waves strength reproducibility during pump–probe experiments", Journal of Applied Physics 120, 035901 (2016) https://doi.org/10.1063/1.4958796
Ultrafast observation of lattice dynamics in laser-irradiated gold foils
We have observed the lattice expansion before the onset of compression in an optical-laser-driven target, using diffraction of femtosecond X-ray beams generated by the SPring-8 Angstrom Compact Free-electron Laser. The change in diffraction angle provides a direct measure of the lattice spacing, allowing the density to be calculated with a precision of ±1%. From the known equation of state relations, this allows an estimation of the temperature responsible for the expansion as <1000 K. The subsequent ablation-driven compression was observed with a clear rise in density at later times. This demonstrates the feasibility of studying the dynamics of preheating and shock formation with unprecedented detail.N. J. Hartley, N. Ozaki, T. Matsuoka, B. Albertazzi, A. Faenov, Y. Fujimoto, H. Habara, M. Harmand, Y. Inubushi, T. Katayama, M. Koenig, A. Krygier, P. Mabey, Y. Matsumura, S. Matsuyama, E. E. McBride, K. Miyanishi, G. Morard, T. Okuchi, T. Pikuz, O. Sakata, Y. Sano, T. Sato, T. Sekine, Y. Seto, K. Takahashi, K. A. Tanaka, Y. Tange, T. Togashi, Y. Umeda, T. Vinci, M. Yabashi, T. Yabuuchi, K. Yamauchi, and R. Kodama , "Ultrafast observation of lattice dynamics in laser-irradiated gold foils", Appl. Phys. Lett. 110, 071905 (2017) https://doi.org/10.1063/1.4976541
- …