95 research outputs found

    Stabilisation of an optical transition energy via nuclear Zeno dynamics in quantum dot-cavity systems

    Get PDF
    We investigate the effect of nuclear spins on the phase shift and polarisation rotation of photons scattered off a quantum dot-cavity system. We show that as the phase shift depends strongly on the resonance energy of an electronic transition in the quantum dot, it can provide a sensitive probe of the quantum state of nuclear spins that broaden this transition energy. By including the electron-nuclear spin coupling at a Hamiltonian level within an extended input-output formalism, we show how a photon scattering event acts as a nuclear spin measurement, which when rapidly applied leads to an inhibition of the nuclear spin dynamics via the quantum Zeno effect, and a corresponding stabilisation of the optical resonance. We show how such an effect manifests in the intensity autocorrelation g(2)(Ï„)g^{(2)}(\tau) of scattered photons, whose long-time bunching behaviour changes from quadratic decay for low photon scattering rates (weak laser intensities), to ever slower exponential decay for increasing laser intensities as optical measurements impede the nuclear spin evolution.Comment: 8 pages, 3 figure

    Synthesis and cryogenic spectroscopy of narrow-diameter single-wall carbon nanotubes

    Get PDF
    AbstractWe report chemical vapor deposition and cryogenic photoluminescence studies of narrow-diameter single-wall carbon nanotubes. Our systematic study of synthesis parameters identifies means to control the average length, diameter, and areal density of carbon nanotubes grown on silica substrates. Using synthesis conditions that favor the growth of carbon nanotubes with sub-nanometer diameters, we fabricate samples with spatially isolated suspended nanotubes ideally suited for optical studies. Photoluminescence spectroscopy of individual nanotubes reveals two classes: spectrally broad and narrow single-peak emission at the temperature of liquid helium. The latter class with spectral line widths down to the resolution limit of our spectrometer of 40 μeV indicates that exciton coherence in carbon nanotubes can be substantially improved by controlling the growth conditions and utilized in sources of indistinguishable single photons

    Quantum modulation of a coherent state wavepacket with a single electron spin

    Full text link
    The interaction of quantum objects lies at the heart of fundamental quantum physics and is key to a wide range of quantum information technologies. Photon-quantum-emitter interactions are among the most widely studied. Two-qubit interactions are generally simplified into two quantum objects in static well-defined states . In this work we explore a fundamentally new dynamic type of spin-photon interaction. We demonstrate modulation of a coherent narrowband wavepacket with another truly quantum object, a quantum dot with ground state spin degree of freedom. What results is a quantum modulation of the wavepacket phase (either 0 or {\pi} but no values in between), a new quantum state of light that cannot be described classically.Comment: Supplementary Information available on reques

    On the monotone stability approach to BSDEs with jumps: Extensions, concrete criteria and examples

    Full text link
    We show a concise extension of the monotone stability approach to backward stochastic differential equations (BSDEs) that are jointly driven by a Brownian motion and a random measure for jumps, which could be of infinite activity with a non-deterministic and time inhomogeneous compensator. The BSDE generator function can be non convex and needs not to satisfy global Lipschitz conditions in the jump integrand. We contribute concrete criteria, that are easy to verify, for results on existence and uniqueness of bounded solutions to BSDEs with jumps, and on comparison and a-priori L∞L^{\infty}-bounds. Several examples and counter examples are discussed to shed light on the scope and applicability of different assumptions, and we provide an overview of major applications in finance and optimal control.Comment: 28 pages. Added DOI https://link.springer.com/chapter/10.1007%2F978-3-030-22285-7_1 for final publication, corrected typo (missing gamma) in example 4.1

    Determination of the LOQ in real-time PCR by receiver operating characteristic curve analysis: application to qPCR assays for Fusarium verticillioides and F. proliferatum

    Get PDF
    Real-time PCR (qPCR) is the principal technique for the quantification of pathogen biomass in host tissue, yet no generic methods exist for the determination of the limit of quantification (LOQ) and the limit of detection (LOD) in qPCR. We suggest using the Youden index in the context of the receiver operating characteristic (ROC) curve analysis for this purpose. The LOQ was defined as the amount of target DNA that maximizes the sum of sensitivity and specificity. The LOD was defined as the lowest amount of target DNA that was amplified with a false-negative rate below a given threshold. We applied this concept to qPCR assays for Fusarium verticillioides and Fusarium proliferatum DNA in maize kernels. Spiked matrix and field samples characterized by melting curve analysis of PCR products were used as the source of true positives and true negatives. On the basis of the analysis of sensitivity and specificity of the assays, we estimated the LOQ values as 0.11 pg of DNA for spiked matrix and 0.62 pg of DNA for field samples for F. verticillioides. The LOQ values for F. proliferatum were 0.03 pg for spiked matrix and 0.24 pg for field samples. The mean LOQ values correspond to approximately eight genomes for F. verticillioides and three genomes for F. proliferatum. We demonstrated that the ROC analysis concept, developed for qualitative diagnostics, can be used for the determination of performance parameters of quantitative PCR

    Pottery production and trade in the Banda zone, Indonesia: the Kei tradition in its spatial and historical context

    Get PDF
    This paper provides the first comprehensive description of pottery production in the Kei islands of eastern Indonesia, based on field data collected mainly in 1981 and on Museum collections in the UK and The Netherlands. The account is situated in what we know of the dynamics of trading systems that existed in the Moluccan islands between 1500 and 2000. Kei pottery is widely thought to be the successor of a tradition established in the Banda islands that was extinguished with the 1621 Dutch massacre of Bandanese, but re-established at several sites in the Kei islands by Bandanese migrants after this date. These claims are critically examined using ethnographic and archaeological data, and an attempt made to compare the production and trading patterns of pottery in the ‘Banda zone’ before and after 1621
    • …
    corecore