1,321 research outputs found
Nilsson-SU3 selfconsistency in heavy N=Z nuclei
It is argued that there exist natural shell model spaces optimally adapted to
the operation of two variants of Elliott' SU3 symmetry that provide accurate
predictions of quadrupole moments of deformed states. A selfconsistent
Nilsson-like calculation describes the competition between the realistic
quadrupole force and the central field, indicating a {\em remarkable stability
of the quadruplole moments}---which remain close to their quasi and pseudo SU3
values---as the single particle splittings increase. A detailed study of the
even nuclei from Ni to Cd reveals that the region of
prolate deformation is bounded by a pair of transitional nuclei Kr and
Mo in which prolate ground state bands are predicted to dominate, though
coexisting with oblate ones,Comment: Replacement I) Title simplified. II) Major revision: structure of
paper kept but two thirds totally rewritten (same number of pages); 20
references adde
Shell-model calculations of two-neutrino double-beta decay rates of Ca with GXPF1A interaction
The two-neutrino double beta decay matrix elements and half-lives of
Ca, are calculated within a shell-model approach for transitions to the
ground state and to the first excited state of Ti. We use the full
model space and the GXPF1A interaction, which was recently proposed to
describe the spectroscopic properties of the nuclei in the nuclear mass region
A=47-66. Our results are =
and = . The result for the
decay to the Ti 0 ground state is in good agreement with experiment.
The half-life for the decay to the 2 state is two orders of magnitude
larger than obtained previously.Comment: 6 pages, 4 figure
Cross-channel information search and patterns of consumer electronics purchasing
Consumers diversify the sources where they seek information
about goods and services as well as the places where they make
a purchase. To a great extent, the choice between online and offline
channels is determined by the qualities of the products that
are sought, the frequency of purchasing them, and the pace of
technological changes that the needed goods undergo.
Consumer familiarity with a particular channel matters as well.
The aim of the article is to verify whether a customerâs characteristics
(age, gender, technical skills, technical education) influence
the way consumers buy consumer electronics. The article focuses
on radio and television equipment, computers, and mobile
phones. The main point of interest is the differences during the
information search and purchasing stages. The paper reports on
the survey results conducted among 741 respondents. The analysis
showed that the subjective perception of the respondentsâ
own technical skills as well as their gender diversify the way electronics
are purchased. A non-linear relationship has been discovered
between the risk involved in filing a warranty claim on
electronics purchased via the Internet and the way of buying
these products
Automated seismic waveform location using multichannel coherency migration (MCM)âI: theory
With the proliferation of dense seismic networks sampling the full seismic wavefield, recorded seismic data volumes are getting bigger and automated analysis tools to locate seismic events are essential. Here, we propose a novel Multichannel Coherency Migration (MCM) method to locate earthquakes in continuous seismic data and reveal the location and origin time of seismic events directly from recorded waveforms. By continuously calculating the coherency between waveforms from different receiver pairs, MCM greatly expands the available information which can be used for event location. MCM does not require phase picking or phase identification, which allows fully automated waveform analysis. By migrating the coherency between waveforms, MCM leads to improved source energy focusing. We have tested and compared MCM to other migration-based methods in noise-free and noisy synthetic data. The tests and analysis show that MCM is noise resistant and can achieve more accurate results compared with other migration-based methods. MCM is able to suppress strong interference from other seismic sources occurring at a similar time and location. It can be used with arbitrary 3D velocity models and is able to obtain reasonable location results with smooth but inaccurate velocity models. MCM exhibits excellent location performance and can be easily parallelized giving it large potential to be developed as a real-time location method for very large datasets
Hidden breakpoints in genome alignments
During the course of evolution, an organism's genome can undergo changes that
affect the large-scale structure of the genome. These changes include gene
gain, loss, duplication, chromosome fusion, fission, and rearrangement. When
gene gain and loss occurs in addition to other types of rearrangement,
breakpoints of rearrangement can exist that are only detectable by comparison
of three or more genomes. An arbitrarily large number of these "hidden"
breakpoints can exist among genomes that exhibit no rearrangements in pairwise
comparisons.
We present an extension of the multichromosomal breakpoint median problem to
genomes that have undergone gene gain and loss. We then demonstrate that the
median distance among three genomes can be used to calculate a lower bound on
the number of hidden breakpoints present. We provide an implementation of this
calculation including the median distance, along with some practical
improvements on the time complexity of the underlying algorithm.
We apply our approach to measure the abundance of hidden breakpoints in
simulated data sets under a wide range of evolutionary scenarios. We
demonstrate that in simulations the hidden breakpoint counts depend strongly on
relative rates of inversion and gene gain/loss. Finally we apply current
multiple genome aligners to the simulated genomes, and show that all aligners
introduce a high degree of error in hidden breakpoint counts, and that this
error grows with evolutionary distance in the simulation. Our results suggest
that hidden breakpoint error may be pervasive in genome alignments.Comment: 13 pages, 4 figure
Dynamics of thermoelastic thin plates: A comparison of four theories
Four distinct theories describing the flexural motion of thermoelastic thin
plates are compared. The theories are due to Chadwick, Lagnese and Lions,
Simmonds, and Norris. Chadwick's theory requires a 3D spatial equation for the
temperature but is considered the most accurate as the others are derivable
from it by different approximations. Attention is given to the damping of
flexural waves. Analytical and quantitative comparisons indicate that the
Lagnese and Lions model with a 2D temperature equation captures the essential
features of the thermoelastic damping, but contains systematic inaccuracies.
These are attributable to the approximation for the first moment of the
temperature used in deriving the Lagnese and Lions equation. Simmonds' model
with an explicit formula for temperature in terms of plate deflection is the
simplest of all but is accurate only at low frequency, where the damping is
linearly proportional to the frequency. It is shown that the Norris model,
which is almost as simple as Simmond's, is as accurate as the more precise but
involved theory of Chadwick.Comment: 2 figures, 1 tabl
A collaborative platform for integrating and optimising Computational Fluid Dynamics analysis requests
A Virtual Integration Platform (VIP) is described which provides support for the integration of Computer-Aided Design (CAD) and Computational Fluid Dynamics (CFD) analysis tools into an environment that supports the use of these tools in a distributed collaborative manner. The VIP has evolved through previous EU research conducted within the VRShips-ROPAX 2000 (VRShips) project and the current version discussed here was developed predominantly within the VIRTUE project but also within the SAFEDOR project. The VIP is described with respect to the support it provides to designers and analysts in coordinating and optimising CFD analysis requests. Two case studies are provided that illustrate the application of the VIP within HSVA: the use of a panel code for the evaluation of geometry variations in order to improve propeller efficiency; and, the use of a dedicated maritime RANS code (FreSCo) to improve the wake distribution for the VIRTUE tanker. A discussion is included detailing the background, application and results from the use of the VIP within these two case studies as well as how the platform was of benefit during the development and a consideration of how it can benefit HSVA in the future
How tidal processes impact the transfer of sediment from source to sink : Mekong River collaborative studies
Author Posting. © Oceanography Society, 2017. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 30, no. 3 (2017): 22â33, doi:10.5670/oceanog.2017.311.Significant sediment transformation and trapping occur along the tidal and estuarine reaches of large rivers, complicating sediment source signals transmitted to the coastal ocean. The collaborative Mekong Tropical Delta Study explored the tidally influenced portion of the Mekong River to investigate processes that impact mud- and sand-sized sediment transport and deposition associated with varying fluvial and marine influences. Researchers participating in this 2014â2015 project found that as sand and mud progress down the tidal portion of the river, sands in suspension can settle during reduced or slack flows as river discharge becomes progressively more affected by tides in the seaward direction. Consequently, deposits on the tidal river bed are connected to sand transport in the channel. In contrast, fine mud particles remain in suspension until they reach an interface zone where waters are still fresh, but the downstream saline estuary nonetheless impacts the flows. In this interface zone, as within the estuary, fine particles tend to settle, draping the sand beds with mud and limiting the connection between the bed and suspended sand. In the Mekong system, the interface and estuarine zones migrate along the distributary channels seasonally, resulting in variable trapping dynamics and channel bed texture. Therefore, the signature of fluvial-sediment discharge is altered on its path to the coastal ocean, and the disconnected mud and sand supply functions at the river mouth should result in distinct offshore depositional signatures.This research was funded by the US Office of Naval
Research (grant numbers: N00014-15-1-2011, N00014-
13-1-0127, N00014-13-1-0781, N00014-14-1-0145)
- âŠ