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It is argued that there exist natural shell-model spaces optimally adapted to the operation of two variants
of Elliott’s SU3 symmetry that provide accurate predictions of quadrupole moments of deformed states. A
self-consistent Nilsson-like calculation describes the competition between the realistic quadrupole force and the
central field, indicating a remarkable stability of the quadrupole moments—which remain close to their quasi-
and pseudo-SU3 values—as the single-particle splittings increase. A detailed study of the N = Z even nuclei
from 56Ni to 96Cd reveals that the region of prolate deformation is bounded by a pair of transitional nuclei 72Kr
and 84Mo in which prolate ground-state bands are predicted to dominate, though coexisting with oblate ones.
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I. INTRODUCTION

Large-scale shell model (LSSM) calculations, when nu-
merically feasible, are the spectroscopic tool of choice in
theoretical nuclear structure. When they are not doable it
is often advised to switch to other—basically mean-field—
methods. A common feature of these approaches is the
reliance on quadrupole degrees of freedom as the backbone of
nuclear structure, which in shell-model language translates as
dominance of the quadrupole force, which is indeed (or should
be) a classic view. Our task is to find ways to put to good use this
dominance. It starts by discovering which are the model spaces
in which to operate. The choice turns out to be quite unique (the
extended extruder-intruder spaces to be defined soon). Though
most often it leads to intractably large diagonalizations, it also
happens to be tailored to take full advantage of two variants—
pseudo- and quasi-SU3—of Elliott’s SU3 symmetry [1]. After
explaining in detail how these symmetries operate, we turn
to quantitative estimates of their reliability by defining and
implementing a self-consistent Nilsson [2] approach in which
the interplay of a realistic quadrupole interaction with the
spherical central field establishes the resilience of the predicted
quadrupole moments. The controlling parameters are the
quadrupole moments themselves, which, in the absence of
a central field, reduce to one of their SU3-like guises.

These ideas are applied to the heavy even N = Z nuclei
shedding light on the hitherto poorly understood competition
between prolate and oblate quadrupole coherence. In this
region the full interplay of quasi- and pseudo-SU3 schemes
operates, illustrating what will become the rule for well-
deformed nuclei, so far only schematically explored at the
onset of rotational motion at N = 90 [3].

II. THE NATURAL ZBM (OR EEI) MODEL SPACES

The usual lore about shell-model spaces is that for light and
medium nuclei they involve one major oscillator (HO) shell
bounded by magic numbers at N,Z = 4, 8, 20, and 40, while
for heavier systems the spin-orbit (SO) force takes over and the
magic boundaries move to N,Z = 28, 50, 82, and 126. This

view has some merit but misses two crucial points: (a) The
observed shell evolution is not driven by the SO terms present
in the NN interactions, but by three-body forces (a word on this
later); (b) the correct model spaces are larger than those defined
by the SO boundaries. Let us examine the possible examples.

In the p shell starting at 4He, as particles are added the
largest orbit p3/2 is “extruded” (or ejected or expelled) from
the space by becoming a “closed shell” when filled, while
the largest orbit in the next shell “intrudes” so as to define
the first of the “EI” spaces p1/2d5/2 ≡ r1d (closing at 28Si).
The notation rp stands for “rest of the major shell of principal
quantum number p,” i.e., all the orbits except the largest one.
What we miss here is that the d5/2 intruder does not come alone
but with an s1/2 partner, as made evident by the spectrum of
13C [4]. Therefore, the correct space is the first of the extended
EI spaces: r1ds (EEI1 or ZBM [5]), with ds = d5/2s1/2, which
is the first instance of a “�j = 2” sequence.

Notation. The full harmonic oscillator shells are called
sd, pf, sdg, . . . , while the reverse order ds, fp, gds, . . . is
used for the �j = 2 sequences.

The next candidate comes from the sd shell starting at
16O, where, as it fills, d5/2 is separated from its partners while
drawing down the largest orbit in the next shell so as to define
the EI2 space: s1/2d3/2f7/2 ≡ r2f (starting at 28Si and closing
at 56Ni). However, we miss again that the intruder comes with
its �j = 2 partner (as seen in 29Si [4]), so r2f becomes r2fp
(EEI2 or ZBM2), with fp = f7/2p3/2. Then we find the space,
relevant for this study, p1/2p3/2f5/2g9/2 ≡ r3g (EI3 closing at
100Sn), which is expected to become r3gds (EEI3 or ZBM3),
with gds = g9/2d5/2s1/2. Direct experimental evidence of the
presence of the �j = 2 partners is hard to obtain in this region,
but abundant indirect evidence is presented in this paper.

One objection to the description above is that 12C and 28Si
are not closed shells (though 56Ni is to a good approximation).
However, EI numbers at N,Z = 6, 14, 28, 50, 82, and 126
provide good boundaries and many convincing candidates to
magicity in the light nuclei (such as 14C, 22O, and 34Si) and the
only systematic magic numbers beyond. The transition from
HO to EI major closures demands three-body mechanisms
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FIG. 1. (Color online) Evolution of model spaces from spin-orbit
(SO) (around HO closures) to extended extruder-intruder (EEI) made
of pseudo-SU3 and quasi-SU3 subspaces (explained in Sec. III).

whose irrefutable need is now established on theoretic [6]
and empiric [7,8] grounds. Explicit introduction of three-body
forces (Fig. 3(b) vs Figs. 3(c) and 3(d) in Ref. [9]) helps
but does not explain the strong magicity of 22O, as seen by
comparing the quoted figures. The notation EI instead of the
usual SO is meant to stress that the SO force—in the classic
l · s sense—is perfectly given by existing NN interactions
above HO closures, where it is responsible for the largest orbit
coming lowest [10]. However, it is definitely not responsible
for the EI closures which demand splittings much larger that
the l · s one provided by the NN interactions. To fix ideas, in
48Ca they would produce a f7/2-p3/2 single-particle gap equal
to that in 41Ca, i.e., 2.5 MeV smaller than the observed one,
a discrepancy that increases to some 4.5 MeV in 56Ni. The
evolution of subshell SO ordering on top of HO closures to the
EEI patterns is illustrated in Fig. 1 for different model spaces.

Both r1ds (ZBM) and r2fp (ZBM2 or SDFP) models lead
to feasible and successful diagonalizations in the neighbor-
hood of 16O and 40Ca [5,11]. The r3gds space is expected
to work equally well around 80Zr—formally the magic upper
boundary of the pf shell—which turns out to be a splendid
rotor [12]. A pure pf description starts failing around N,Z ≈
34, and it could be hoped that r3g would cope beyond, but
the calculations (always feasible though sometimes hard) fail
to produce strongly deformed prolate bands demanded by the
data. These are naturally explained in the r3gds space, as we
shall demonstrate notwithstanding the near impossibility of
exact diagonalizations: first through heuristic arguments based
on the approximate SU3 symmetries and then by very simple
self-consistent calculations that account semiquantitatively for
the interplay between the realistic quadrupole interaction and
the monopole central field.

III. QUADRUPOLE COHERENCE: SU3,
PSEUDO-SU3, AND QUASI-SU3

Nuclear rotational motion was predicted by Bohr and
Mottelson in 1953 [13]. The idea was that nuclei could
acquire a permanent quadrupole deformation in their intrinsic
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FIG. 2. (Color online) Eigenstates of −2q20. SU3 intrinsic states
of minimum energy are obtained by orderly filling. Note that −Q0 is
plotted on the vertical axis.

frame, which would translate into a J (J + 1) spectrum
in the laboratory frame. Historically, this first example of
spontaneously broken symmetry was confronted with the need
to explain how a deformed intrinsic state—which has no
definite angular momentum J—could be an eigenstate of a
system that must necessarily conserve J . The elegant way
out was found by Elliott, whose SU3 model [1] provides a
rigorous example of intrinsic states that are not eigenstates of
a Hamiltonian H but of H − λJ (J + 1).

More precisely, H is taken to be the quadrupole force
−2q · 2q, with q ≡ q2m = r2C2m = r2

√
4π/5 Y 2m acting in

a full major HO shell. Then the eigenstates have the form
E(L,i) = E(i) + 3L(L + 1), where L is the orbital angular
momentum and E(i) the energy of one of the possible intrinsic
states. We are interested only in those that maximize the intrin-
sic quadrupole moment, which we write in terms of oscillator
quanta Q0 = 2q20 = (2nz − nx − ny). Taking, for example,
p = nx + ny + nz = 2, the six possible single-particle states
[nznxny] = [200],[110],[101],[020],[011],[002] can be dis-
posed as in Fig. 2. The intrinsic states are the determinants
obtained by filling the fourfold degenerate orbits (two neutrons
and two protons of spins up and down) from below (prolate
states with Q0 > 0) or from above (oblate states with Q0 < 0).
Prolate filling is favored as it leads to larger |Q0|.

Originally, SU3 was expected to apply to the sd shell.
Indeed, the four particles in 20Ne (Q0 = 16) produce a
good rotor and eight particles in 24Mg—because of the
degeneracy of the Q0 = 1 levels in Fig. 2—lead to triaxiality,
associated with the mixing of K = 0 and K = 2 prolate bands.
For 12 particles in 28Si, both shapes are expected to be
degenerate (|Q0| = 24). Observation does not quite square
with predictions: The K = 2 band in 24Mg is higher than
expected, and the “nearly degenerate” oblate and prolate states
in 28Si are separated by some 6 MeV with a third candidate
coming in (the d12

5/2 N = Z = 14 closure in Fig. 1). Still, the
departure from strict SU3 validity should not hide the fact that
24Mg has a K = 2 (γ ) band, and that three of the six lowest
states in 28Si have J = 0+, a forerunner of other spectacular
coexistence situations.
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Though Elliott’s conceptual breakthrough was obscured
by the limited applicability of the exact SU3 symmetry, its
indicative value remains high, as illustrated by examining the
possible forms of the q20 operator in LS and jj formalisms
in Eqs. (1)–(5): They will be seen to suggest naturally the
pseudo- and quasi-SU3 variants that are the backbone of a full
shell-model description of rotational motion:

〈pl|r2|pl〉 = p + 3/2, (1)

〈pl|r2|pl + 2〉 = −[(p − l)(p + l + 3)]1/2, (2)

〈lm|C2|lm〉 = l(l + 1) − 3m2

(2l + 3)(2l − 1)
, 〈lm|C2|l + 2m〉

= 3

2

{
[(l + 2)2 − m2][(l + 1)2 − m2]

(2l + 5)(2l + 3)2(2l + 1)

}1/2

,

(3)

〈jm|C2|jm〉 = j (j + 1) − 3m2

2j (2j + 2)
, 〈jm|C2|j + 2m〉

= 3

2

{
[(j + 2)2 − m2][(j + 1)2 − m2]

(2j + 2)2(2j + 4)2

}1/2

,

(4)

〈jm|C2|j + 1m〉 = −3m[(j + 1)2 − m2]1/2

j (2j + 4)(2j + 2)
. (5)

Intrinsic states can be constructed by diagonalizing q20,
which can be done in three possible ways, described next,
after noting that, so far, we have assumed dimensionless
oscillator coordinates and made no difference between 〈2q20〉
and Q0. Dealing with electromagnetic properties demands to
recover dimensions so r2 → r2b2, where b2 is the oscillator
parameter. Then Q0 → Q0b

2. However, 〈2q20〉 is best kept
adimensional when working with the quadrupole interaction.
So now Q0/b

2 = 〈2q20〉, and the choice of notation will
depend on context.

A. Strict SU3

Use Eqs. (1)–(3) in LS form to obtain exactly Fig. 2.
Alternatively, use Eqs. (1), (2), (4), and (5) in jj form to
incorporate spin, leading to the bottom panel of Fig. 3. Only
positive values of K ≡ |m| are shown. Each orbit may contain
two neutrons and two protons. Note that if in Fig. 2 spin is
allowed each orbit splits into 2(nx − ny) ≡ 2m → 2(m ± 1/2)
and the one-to-one correspondence with the bottom panel of
Fig. 3 becomes evident.

The importance of SU3 goes well beyond its mathematical
elegance: It rests on the introduction of the q · q interaction
restricted to a single major HO shell, which, as demonstrated
in Ref. [14], is the major collective ingredient of realistic
Hamiltonians (i.e., consistent with two nucleon data).

B. Pseudo-SU3

Pseudo-SU3 [15] is adapted to rp spaces whose orbits have
the same angular momentum j sequences as those of full HO
major shell with total quantum number p − 1 and proceeds
as if rp ≡ HO(p − 1), in our case r3 ≡ sd. For the angular

-7.5

-4.5

-1.5

 1.5

 4.5

 7.5

1 3 5 7 9  11

-Q
0/

b2  fo
r 

qu
as

i p
=

4

2K

 quasi-su3 
qq-quasi-su3

0

3

6

9

 12

1 3 5 7 9

-Q
0/

b2  +
2p

2K

p=4 su3
p=2 su3

qq-pseudo p=2 su3

FIG. 3. (Color online) The Zuker-Retamosa-Poves (ZRP) dia-
grams. (Top) Intrinsic states in the p = 4 gds space for the quasi-SU3
model and for the exact q · q calculation. See text for explanation of
thin lines. (Bottom) Intrinsic states of SU3 or pseudo-SU3 for p = 2
and 4. For the former, exact q · q values (“qq-pseudo”) are also shown.
Each orbit may contain two neutrons and two protons. The lowest six
orbits are common to p = 2 and 4.

Eqs. (4) and (5) the identity is perfect but the radial Eqs. (1)
and (2) raise a problem: r3 has p = 3 and sd has p = 2. The
bottom panel of Fig. 3 exhibits both of the strict SU3 (or
pseudo-SU3) values for p = 2 and 4, as well as the exact
result of diagonalizing 2q20 in the r3 space, collected under
p-d in Table I. It is seen that the differences are substantial,
but they do not invalidate the existence of an underlying SU3
symmetry: The q · q interactions in the sd and r3 spaces are
very different, but their behavior is qualitatively similar. In
what follows we always use the exact r3 variant of q · q.

C. Quasi-SU3

Quasi-SU3 [3,16] is adapted to �j = 2 spaces. Then
〈jm|C2|j + 1m〉 in Eq. (5) plays no role. Now identify the
�j = 2 sequence to a �l = 2 one. In our case it is J =
9/2, 5/2, 1/2 to l = 4, 2, 0. Then replace Eqs. (1), (2), and (4)
with Eqs. (1), (2), and (3), through l → j , p → p + 1/2,
m → m + 1/2, and −m → −m − 1/2: (m > 0). This defines
a quasi-q20 operator whose spectrum is shown (under “quasi-
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TABLE I. Eigenvalues of −2q20 for the ith quasi-gds (denoted q) and pseudo-r3 (denoted p) orbits; q-s, p-s are the results using the
schematic quasi- and pseudoquadrupole forces, respectively, in Fig. 3. q-d and p-d are the results of diagonalizing the exact quadrupole
interaction; c-q and c-p are the corresponding cumulated absolute values for n particles in units of b2.

i 1 2 3 4 5 6 7 8 9

q-s −7.71 −4.50 −1.92 −1.50 1.50 1.50 3.64 4.50 4.50
q-d −6.83 −4.11 −1.61 −1.42 1.33 1.48 3.26 3.90 4.00

p-s −4.00 −1.00 −1.00 2.00 2.00 2.00
p-d −5.06 −1.41 −1.08 2.37 2.57 2.61

Q0 values for n particles (c-q for gds and c-p for r3)
n 4 8 12 16 20 24 28 32 36
c-q 27.32 43.76 50.20 55.88 50.56 44.64 31.60 16.00 0.00
c-p 20.24 25.88 30.20 20.72 10.44 0.00

su3”) in the top panel of Fig. 3, where thin lines indicate
a one-to-one correspondence with Fig. 2, with bandheads at
2p − 1/2, except for K = 1/2 for even p. For odd p the
correspondence is perfect throughout. The spectrum for the
genuine q20 operator (“qq-quasi-su3” in the figure) is seen
to be quite close to the schematic one (numerical values are
collected under q-d in Table I).

Table I compares the schematic orbits of Fig. 3 with the
ones obtained by diagonalizing 2q20 associated with “true”
2q · 2q and not one of its variants. The two bottom lines give
the cumulated values after filling up to ith orbit with two
neutrons and two protons. Thus, for 12 particles in r3 and 4
in gds we find 〈2q20〉 = 30.20 + 27.32 = 50.52. This table is
the relevant one for prolate states.

Quasi-SU3 strongly prefers prolate solutions, as Fig. 3
makes clear: It is more advantageous to fill orbits from below
than from above.

D. Single-orbit quadrupole

When the g orbit becomes sufficiently depressed with
respect to its ds partners their influence can be neglected and
we move to the single j orbit regime with quadrupole moments
given by

Q0 = 2〈r2C2〉 =
∑
m

(p + 3/2)
j (j + 1) − 3m2

2j (j + 1)
, (6)

which shows that, before midshell, filling large m values
(negative Q0) is favored. The situation is reversed after
midshell. Though the notion of shape is questionable in this
case, states with positive and negative Q0 are referred to as
prolate and oblate, respectively.

Table II collects the possible values of 〈2q20〉 for the
g9/2 orbit and the r3 space, where one may wish to speak
in terms of holes rather than particles, and the table allows
for all possibilities. For example, under μ = 8 we find that
〈2q20〉 = 25.88 for prolate particles, 20.72 for prolate holes,
−25.88 for oblate holes, and −20.72 for oblate particles.

To guarantee a bona fide intrinsic state, Q0 must coin-
cide with the values extracted either from the spectroscopic
quadrupole moment (Q0s),

Qspec(J ) = 〈JJ |3z2 − r2|JJ 〉,

Q0s = (J + 1) (2J + 3)

3K2 − J (J + 1)
Qspec(J ), K �= 1, (7)

for Bohr Mottelson rotors or the corresponding B(E2) transi-
tions (Q0t ),

B(E2,J → J − 2) = 5

16π
e2|〈JK20|J − 2,K〉|2 Q2

0t ,

K �= 1/2, 1. (8)

The condition Q0 ≈ Q0s ≈ Q0t is well fulfilled by SU3
states and its variants. (Q0s may be tricky, though, as it is
more sensitive to details than Q0t . For an example, refer to
Sec. VA2.)

IV. COMPUTATIONAL STRATEGY: SU3-NILSSON
SELF-CONSISTENCY

The guiding idea is that once quadrupole dominance sets
in, the wave functions are basically given by the quadrupole
force, which is quite immune to single-particle details. In other

TABLE II. (Top) Intrinsic prolate and oblate quadrupole moments 〈2q20〉 for ν particles in the 0g9/2 orbit (N = Z). (Bottom) Pseudo-SU3
〈2q20〉 for μ prolate particles (p-p) or μ prolate holes (p-h), −〈2q20〉 for μ oblate particles [-(o-p)] or μ oblate holes [-(o-h)].

ν 2 4 6 8 10 12 14 16

prol 5.33 10.66 14.66 18.66 20 21.33 18.66 16
−obl 8 16 18.66 21.33 20 18.66 14.66 10.66

μ 2 4 6 8 10 12 14 16
p-p; -(o-h) 10.12 20.24 23.04 25.88 28.05 30.20 25.46 20.72
p-h; -(o-p) 5.22 10.44 15.66 20.72 25.46 30.20 28.04 25.88
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words, 〈2q20〉 varies little. Our aim is to estimate 〈2q20〉 and
understand the reason for its stability.

We are interested in even N = Z = 28 to 48 nuclei. Full pf
diagonalizations are possible, but their interest is restricted to
the lightest species. For r3g exact calculations are also possible
that account for oblate states. The JUN45 interaction [17] is
used throughout the region. Though the r3g space is of limited
relevance, the exact calculations serve as a test of our simple
models. For the more collective prolate states the full r3gds
space is necessary and exact calculations are not presently
feasible, so we introduce a self-consistent version of Nilsson’s
model that reduces to quasi- and pseudo-SU3 in the absence
of a central field [18].

A. Example of naive B E2 estimate

For SU3 the correct value of Q0 to be used in Eqs. (7)
and (8) is Q0 = (〈2q20〉 + 3)b2 [1,19] with 〈2q20〉 given in
Table I or II. In what follows we adopt this form in all cases.

The procedure is simple: Use the tables to match oblate
pseudo-SU3 states in r3 to oblate states in g and prolate
pseudo-SU3 states in r3 to prolate quasi-SU3 states in gds. For
instance, choose 16 particles and decide that we are interested
in 72Kr configurations with 12 particles in r3 and 4 above. From
the tables we have for 〈2q20〉 the following possibilities:

. Oblate
〈2q20〉 = −30.2 for m = 12 in pseudo,
〈2q20〉 = −16 for n = 4 in g,
Total Q0/b

2 = −(30.2 + 3 + 16) = −49.2;

Prolate
〈2q20〉 = 30.2 for m = 12 in pseudo,
〈2q20〉 = 27.32 for n = 4 in quasi,
Total Q0/b

2 = 30.2 + 3 + 27.32 = 60.52;

Recover dimensions through b2 ≈ 41.4/�ω fm2, �ω =
45A−1/3 − 25A−2/3.

Now assume a conventional 2�ω scalar effective charge,
e0 = eν + eπ = 2 chosen throughout in what follows.
Then, for A = 72, b2 = 4.42 e fm2, we have Q0 ≈
−217 e fm2 (oblate) and 267 e fm2 (prolate).

The 2�ω effective charge is caused by coupling states in a
major HO shell to the giant quadrupole resonance. A rigorous
derivation leads e0 = 1.77 [14], a number to be preferred [20],
and shown in parentheses below. Using B(E2 : 2+ → 0+) =
[Q0]2/50.3 from Eq. (8) leads to

B(E2 : 2+ → 0+) ≈ 936(725) e2 fm4 for oblate;
B(E2 : 2+ → 0+) ≈ 1422(1101) e2 fm4 for prolate.
When working in EI or EEI spaces it becomes necessary

to account for 0�ω polarization effects, in our case owing to
coupling to the lowest J = 2+ state in 56Ni. The effect is
estimated later, leading to e0 � 2.

B. Nilsson revisited: The MZ equations

The estimates above neglect single-particle effects. To
account for them demands solving the Schrödinger equation
for the quadrupole force in the presence of a central field, a task

as hard as the general problem. In Ref. [16] Martı́nez-Pinedo
and Zuker (MZ) proposed to reduce it, by linearization, to a
Nilsson-type Hamiltonian. That this should be possible seems
obvious, but the implementation is not trivial. Because of
a subtlety that was missed at the time, the project was left
unfinished. We retake it.

We would like to solve

Hmq =
∑

εini − �ωκ

(
2qp

N2q,p

+ 2qp+1

N2q,p+1

)2

, (9)

N 2
2q,p =

∑
(2qrs)

2 = 5

2

p∑
k=0

(k + 1)(2p − 3k)2, (10)

where we have borrowed from Ref. [14] the normalized form
of the quadrupole force that emerges naturally when it is
extracted from a realistic interaction (qp is the quadrupole
operator in major shell p; the square stands for scalar product).
This form ensures that κ ≈ 0.22–0.25 is a universal constant
that demands a 30% renormalization owing to coupling to
the 2�ω quadrupole degrees of freedom [14]. It also ensures
that nuclei do not become needles, thus solving the crippling
problem of the naive quadrupole force [21]. In all that follows
we have fixed κ = 0.3.

To prepare for linearization replace q with q20 operators
(notice that we use sometimes q20 instead of q20 for typo-
graphical reasons),

Hmq0 =
∑

εini − �ωκ

(
2q20,p

N2q20,p

+ 2q20,p+1

N2q20,p+1

)2

, (11)

N 2
2q20,p

=
∑

(2q20,rs)
2 =

p∑
k=0

(k + 1)(2p − 3k)2. (12)

Note that Eq. (12) is obtained by summing the squares of the
levels in Fig. 2.

Now concentrate on a single space. The operation amounts
to replacing 2q · 2q with 2q202q20 and demands some care
because q20 is a sum of neutron and proton contributions q20 =
qν

20 + qπ
20. As calculations are done for each fluid separately,

the correct linearization for the neutron operators, say, is

q20 q20 → qν
20

〈
qν

20 + 2qπ
20

〉 ≈ 3qν
20

〈
qν

20

〉
if

〈
qν

20

〉 ≈ 〈
qπ

20

〉
,

leading to the MZ equation

Hmq0 =
∑

εini − 3�ωκ

N 2
2q20,p

〈
2qν

20

〉
2qν

20. (13)

The subtlety missed in Ref. [16] was the need to change N2q,p

into N2q20,p in going from Eqs. (9) to (11), thus making it
impossible to discover the proper way to proceed, which now
can be implemented [18].

To find the proper generalization of Eq. (13), note that in the
full space q becomes a sum of four contributions q20 = qνu

20 +
qπu

20 + qνd
20 + qπd

20 (u = gds, d = r3). Repeating the arguments
leading to Eq. (13) and settingNi = N2q20,i leads to the general
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FIG. 4. (Color online) Calculation of 〈2q20〉 in (gds)4. Input
values are in red. Output values were obtained solving Eq. (13)
for εi = 0,1,2 MeV for i = g,d,s, respectively. When input and
output values coincide, self-consistency is achieved, i.e., when lines
cross, which happens at abscissae 0.83, 0.91, 0.95 for � = �ωκ =
2.7,3.7,5.1, respectively. δ = 0〈2q20〉 = 2.666 corresponds to one
prolate g orbit (from Table II).

MZ equation

Hsp − 4�ωκ
qν

4

N 2
4

(〈
qν

4

〉 + 〈
2qπ

4

〉 + 〈
2qν

3

〉N4

N3
+ 〈

2qπ
3

〉N4

N3

)

≈ Hsp − 4�ωκ
qν

4

N 2
4

(
3
〈
qν

4

〉 + 6
〈
qν

3

〉)

= Hsp − β�ωκ

〈
2qν

4

〉
N 2

4

2qν
4 , (14)

where we have introduced a boost factor β, set qν
i =

qπ
i , and used the correct numbers from Eq. (12), N2q,3 =√
90 × 2.5 ≈ 15, N2q,4 = √

210 × 2.5 ≈ 23, to approximate
N4/N3 = 22.91/15 ≈ 1.5.

As the 〈2q20〉 ranges will be 〈2q3〉 ≈ 30 and 〈2q4〉 = 27–55,
the modest value of β = 3 in Eq. (13) will increase to about
β = 9–12, but the work involved in solving Eqs. (13) and (14)
is identical.

Let us examine the steps involved.
(a) Equation (13) is solved setting as inputs 〈2q20in〉 =

δ〈2q20max〉, which for δ = 1 yields the maximum value of
〈2q20〉 (the one obtained at εi = 0). The resulting eigenvalue
can be written as

E(δ) = 〈Hsp〉 − 3�ωκ

N 2
2q20

δ〈2q20max〉〈2q20out〉.x (15)

(b) Extract 〈2q20out〉, use it as the next input, and iterate
until 〈2q20in〉 = 〈2q20out〉. Figure 4 sums up the procedure.

(c) Guess the energies. The comparison of the resulting
〈2q20out〉 = Q0/b

2 with exact results turns out to be system-
atically satisfactory. Some examples are given in Sec. IV C.
As a reasonable estimate of Q0/b

2 amounts to a good guess
of intrinsic state from which the energy could be extracted by
taking the expectation value of Hmq in Eq. (9), but it is more
instructive and simpler to stand by our basic assumption that

2q20 is an acceptable quantum number and rely on the exact
SU3 result as a guide,

E=−�ωκ

N 2
2q

[2λ(2λ + 6) + 2μ(2μ + 6) + 4λμ − 3L(L + 1)],

where λ and μ are the difference in quanta in the z and x and
the x and y directions, respectively. This result is valid for
the q · q force that contains one- and two-body parts. Because
we are not interested in the former, we expect modifications if
they are neglected. Moreover, we restrict the energy estimates
to (λ0) representations because the only obviously correct
identification in the absence of external monopole fields
is 2λ = 〈2q20〉. The idea is to assume that the quadrupole
contribution to the energy keeps this form using the calculated
〈2q20〉 value.

The proposed estimates are as follows:

BE2 = B(E2 : 2+ → 0+) = [(〈2q20〉 + 3)b2]2/50.3,

Qs = Q(J=2)s = (〈2q20〉 + 3)b2/3.5,

E = 〈Hsp〉 − �ωκ

N 2
2q

〈2q20〉(〈2q20〉 + ζ ). (16)

For Qs and B(E2 : 2+ → 0+), we use Eqs. (7) and (8). The
norms are those of the full quadrupole interaction; i.e., N2q =√

2.5N2q20. The parameter ζ in the form of E should be 6 if
the SU3 analogy held perfectly. However, as hinted above and
made evident in Sec. IV C, this is not possible and ζ must be
viewed as an artifact to estimate uncertainties in the guessed
energies.

Finally, let us propose a generalization of Eq. (16) for the
the energy of a rk

3 (gds)l configuration and write explicitly Qs

and B(E2 : 2+ → 0+). Calling 〈2q20(i)〉 = Qi , we have

BE2 = B(E2 : 2+ → 0+) = [(Q3 + Q4 + 3)b2]2/50.3,

Qs = Q(J=2)s = (Q3 + Q4 + 3)b2/3.5,

E = Hm − �ωκ

(
Q3

15
+ Q4

23

)(
Q3 + ζ

15
+ Q4 + ζ

23

)
,

(17)

where the monopole term Hm subsumes the evolving behavior
of the single-particle fields discussed in Sec. V B.

C. Pseudo- and quasi-SU3 as exact symmetries

According to SU3, 28Si has a prolate-oblate degenerate
ground state corresponding to the (λ,μ) = (12,0) and (0,12)
representations. This holds for the full q · q, i.e., including
both its one- and two-body terms. If the former are ignored
we obtain the results in the top right part of Table III, which
show no signs of an exact degeneracy. The estimated energy
using ζ = 0 in Eq. (16) is about 5% larger than the exact one.
Nearly perfect degeneracy is achieved with the monopole-free
q · q—i.e., with all centroid averages set to 0—in the top left
part and the estimated energy with ζ = 3 is now some 5% too
small.

The story repeats itself in the bottom parts for 68Se: a
remarkable result establishing that pseudo-SU3 behaves as an
exact symmetry in this case. This is a puzzling result because
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TABLE III. q · q calculations in 28Si [(sd)12] (top parts) and
68Se [r12

3 ] (bottom parts). To the left, q · q is made monopole free.
“Int” stands for intrinsic values defined in Eq. (16), with ζ = 3 in the
left part and 0 in the right one. Absolute energies given for the ground
state; excitation energies given for the other states (MeV).

J E Qs BE2 J E Qs BE2

0 −27.263 29 0 −22.044
0 0.001 92 2 0.958 −26.330 166.979
2 0.917 14 −0.7785 167.299 0 1.646
2 0.917 30 0.7785 167.301 2 2.494 26.323 166.903

Int −26.20 −26.40 169.74 Int −23.23 −26.40 169.74
0 −14.978 22 0 −12.176
0 0.000 42 2 0.533 −42.087 426.802
2 0.506 77 −2.8707 427.591 0 0.996
2 0.506 83 2.8708 427.590 2 1.467 42.117 426.915
Int −13.99 41.21 413.64 Int −12.73 41.21 413.64

we are using the true q · q potential whose matrix elements
coincide in magnitude with their pseudo counterparts but have
different sign structure, so much so that their overlaps [in the
sense of Ref. [11], Eq. (44)] nearly vanish.

Let us draw some conclusions.

(i) Energies are very sensitive to monopole behavior, but
B(E2 : 2+ → 0+) rates are not.

(ii) When bands—with equal B(E2 : 2+ → 0+) and op-
posite Qs—cross, they mix, leading to unchanged
B(E2 : 2+ → 0+) and cancellation of Qs . Note that
this could happen through small “impurities” in the
Hamiltonian. If the symmetry were exact, the Lanczos
algorithm used in the diagonalizations could not break
the degeneracy.

(iii) Pseudo-SU3 appears to be close to an exact symmetry.

D. Checks

Allowing the single-particle energies to vary produces
more stringent tests of the estimates in Eq. (16). Numerous
calculations done for the rn

3 and(gds)n spaces lead to results
that are well summarized by the examples in Table IV.

TABLE IV. Monopole-free q · q calculations in (gds)8−12.
Single-particle energies in MeV: εi = [0.0, 0.0, and 0.0] (e0) and
[0.0, 1.0, and 2.0] (e1) for i = g, d, s, respectively. “Int” stands for
intrinsic values defined in Eq. (16), with ζ = 3.

J E Qs BE2 J E Qs BE2
(gds)8 e0 (gds)8 e1

0 −12.977 0 −8.976
2 0.113 −59.735 857.959 2 0.103 −57.313 795.566
Int −12.34 −59.98 876.05 Int −8.28 −57.50 805.07

(gds)12 e0 (gds)12 e1
0 −17.894 0 −12.641
2 0.125 −65.296 1161.574 2 0.136 −65.609 1065.721

Int −15.84 −69.16 1165.04 Int −8.63 −67.49 1109.34

In all cases the self-consistent calculations do well for the
quadrupole properties. The estimated energies in (gds)8 are
also satisfactory, but they fall short for (gds)12, which is triaxial
because the platform at 〈2q20〉 = 1.5 in Fig. 3 is not fully filled,
leading to μ �= 0, while E in Eq. (16) it is designed for μ = 0
only.

V. N = Z NUCLEI

Granted the benefit of some hindsight, a reading of Fig. 3
suggests three regimes for N = Z nuclei from 56Ni up to
96Cd. Note that placing the gds “quasi” orbits on top of the
“pseudo” r3 ones was designed to facilitate such a reading.

(i) The r3 pseudo-SU3 nuclei. They fill orderly the three
lowest levels in Fig. 3: 60Zn (analog of 20Ne in the
sd shell, a mild rotor), 64Ge (analog of 24Mg, a rotor
exhibiting a γ band, as expected whenever orbits are
not all filled at a given level), 68Se (analog of 28Si,
with degenerate prolate and oblate bands). While SU3
dominance is largely frustrated in the sd shell, here it is
expected to hold well because of the near degeneracy
of the single-particle orbits. This region makes it
possible to study the full pf to r3 reduction, a unique
opportunity to validate the notion of model space and,
in particular, the assumption that 56Ni can be treated
as a closed shell. As for r3g calculations [22], they add
little to the r3 ones.

(ii) Coexistence from 72Kr to 84Mo. For 12 particles,
i.e., 68Se, 〈2q20〉 reaches a maximum in r3 (see
the last lines of Tables I and II). Adding particles
to the pseudo orbits leads to a loss while adding
them to the quasi orbits leads to a gain. By filling
the quasi orbits, well-deformed prolate states can
be constructed for 4, 8, 12, and 16 particles whose
quadrupole energy will overcompensate the monopole
(i.e., single-particle) losses. Oblate states very close in
energy can also be found, leading to coexisting bands.
The prolate and oblate states demand r3gds and r3g
spaces, respectively. The associated dimensionalities
exceed 1014 for the former and 1010 for the latter,
still large but feasible. Therefore, we rely on a
generalization of the simplified approach of Sec. IV C
for both deformations and check the oblate results via
exact diagonalizations. For studies of the region, see
Refs. [23,24].

(iii) The r3g nuclei 88Ru , 92Pd, and 96Cd. The second has
been measured recently [25] and postulated as candi-
date for a new form of boson aligned collectivity. We
examine the claim. The—still unknown—spectrum of
96Cd is shown to be probably closer to sdg than to
r3g.

A. The p f -to-r3 reduction

Doubts may be raised about the doubly magic nature of
56Ni because its first 2+ is rather low and, depending on
the effective interaction used (KB3G, GXPF1A) [26,27], the
closed-shell component amounts to only 60%–70%. However,
it is in the nature of the shell model to recognize that there may
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be a difference between the potentially complicated structure
of a state and its simple behavior. As a first hint of what is
expected of magic nuclei, we refer to Figs. 1–5 in Ref. [28]:
At magic numbers, two-neutron and two-proton separation
energies exhibit systematic jumps, clearly the case for N
or Z = 28 and a fortiori for 56Ni, but not for occasional
candidates such as N = 56, which is magic only for Z = 40.

For our present purpose the state of interest is the head of the
4p-4h rotational band. According to Eq. (6), four holes in the
0f7/2 orbit give a prolate contribution of 12b2 to the intrinsic
quadrupole moment while four pseudo-SU3 particles in r3

contribute with ≈ 22b2, adding up to 34b2, in agreement with
32b2 from a full 4p-4h pf -shell calculation, a first example of
the use of our schematic coupling schemes.

1. 0�ω polarization

The most important characteristic of a doubly magic
nucleus is that it defines a before and an after. Before 56Ni,
nuclei are basically of f type. Beyond, they are at first of r3 type
until the extension to r3gds spaces becomes imperative. To
treat 56Ni as a core, the Hamiltonian and transition operators
have to be renormalized. The dominant mechanism involves
coupling to the low-lying 2+ state, leading to three-body
forces and two-body effective transition operators [29] (i.e.,
state-dependent effective charges), whose neglect, as stressed
in Ref. [14], is “common but bad practice.” Short of a rigorous
treatment, we chose the following expediencies.

(i) For the energies we assume that JUN45 [17] provides a
reasonable approximation to the effective Hamiltonian.
To fix ideas: In Ref. [14] it is shown that for the
quadrupole component of the bare realistic forces the
2�ω effects demand a 30% boost (consistent with what
is known about phenomenological interactions). As a
consequence, the effective q · q amounts to about 50%
of the total interaction. In the case of JUN45 it jumps
to over 75%, indicating a strong contribution owing to
0�ω mechanisms.

(ii) For the transition operators we proceed by brute force,
estimating effective charges by comparing full pf
transitions rates to those obtained in the r3 or r3g
spaces.

2. 60Zn, more on magicity

To check that 60Zn is properly described by r4
3 config-

urations we do a full pf diagonalizations which involves
2 292 604 744 M = 0 Slater determinants. The story is told in
Table V. A calculation in the r3 space, using a pure quadrupole-
quadrupole interaction, gives values in the range 24b2.

TABLE V. Properties of the yrast band of 60Zn (E in MeV, Q in
units of b2). Calculations: full pf with KB3GR; and r3 with q · q.

J Eexp Eqq Epf Q0s,qq Q0s,pf Q0t,qq Q0t,pf

2+ 1.00 1.00 1.07 24 22 23 31
4+ 2.19 3.34 2.31 23 25 22 30
6+ 3.81 7.03 4.06 23 14 19 31

As expected, we have good rotational features including
J (J + 1) spacings. The full pf -shell calculation using the
KB3GR interaction [30] accounts well for the experimental
spectrum. The J (J + 1) spacings are gone, but this is of little
consequence. As abundantly emphasized in Ref. [3], what
matters is the wave function, i.e., the quadrupole moments.
The spectrum may be sensitive to details detected in first-order
perturbation theory that do not change the structure of the state.
The message from Table V is that the quadrupole moments of
the huge calculation and the modest one are compatible, to
within a crucial caveat: The full pf space leads to Q0t values
that are about 1.36 times bigger than the r3 ones. Because
the coupling is mediated basically by the p3/2f

−1
7/2 jumps, the

renormalization decreases as the p3/2 orbit gets filled, thus
blocking the jumps. The results hardly change when JUN45 is
used instead of q · q in the Q0t,qq column of Table V: 23 goes
to 20.8, increasing the enhancement factor F from 1.36 to
1.48. The calculated spectrum—though still dilated—comes
closer to the experimental one.

Note that the evolutions of Q0s and Q0t are quite different.
In general, the two quantities will be approximately equal only
in the case of well-developed rotors. More often than not, Qs

is very sensitive to details, while Qt is close to the predictions
from Tables I and II.

It is worth mentioning that 60Zn has a superdeformed
excited band at relatively low energy with Q0 = 67(6)b2 [31].
From Tables II and III two prolate candidates emerge with
configurations f 12r4

3 (gds)4 and f 12(gds)8. Both are consistent
with observation.

3. 64Ge

For 64Ge the diagonalization of the q · q interaction in
the (r3)8 space yields the expected results for an (84) SU3
representation with nearly degenerate 2+ states—with Q0 of
equal magnitude and opposite signs—corresponding to the
K = 0 and 2 ground-state and γ bands, respectively, and
B(E2 : 2+ → 0+) of about 300 e2 fm4. Table VI proposes
a comparison of q · q and JUN45 results—in r3 and r3g spaces,
respectively—with data, well reproduced by GXPF1A calcula-
tions [32]. Using as reference the B(E2 : 2+ → 0+) values, it
is found that in going from r3 to pf the enhancement factors
F are 1.62 (for JUN45) and 1.23 (for q · q).

TABLE VI. Properties of low-lying states in 64Ge: energies in
MeV, B(E2) in e2 fm4. Calculations: full pf with GXPF1A [32]; r3g

with JUN45; and r3 with q · q.

J π Exp pf r3g q · q

2+
1 Ex 0.90 0.94 0.86 0.50

2+
1 Qs −18.6 −24.4 5.03

B(E2 : 2+
1 → 0+

1 ) 410(60) 406 251 300
2+

2 Ex 1.579 1.56 1.27 0.55
2+

2 Qs 18.5 23.3 −5.42
B(E2 : 2+

2 → 2+
1 ) 620(210) 610 182 479

B(E2 : 2+
2 → 0+

1 ) 1.5(5) 14 13 39
4+

1 Ex 2.053 2.00 2.16 1.61
B(E2 : 4+

1 → 2+
1 ) 674 314 390
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TABLE VII. Properties of low-lying states in 68Se: energies in
MeV, B(E2) in e2 fm4. Calculations: full pf with GXPF1A [32];
r3 with JUN45: r3 with q · q; and full pf with KB3GR (PF ). The
experimental 0+

2 energy is a guess.

J π Exp pf r3 q · q PF

0+
2 Ex (1.19) 0.69 0.96 0.79 1.42

2+
1 Ex 0.85 0.71 0.54 0.53 0.96

2+
1 Qs 11 35 −42 39

B(E2 : 2+
1 → 0+

1 ) 440(60) 491 307 420 409
2+

2 Ex 1.59 1.00 1.39 1.26 1.74
2+

2 Qs −8 −33 42 −16
B(E2 : 2+

2 → 2+
1 ) 689 7 0.00 297

B(E2 : 2+
2 → 0+

2 ) 499 262 420 223
B(E2 : 2+

2 → 0+
1 ) 0.3 4 0.7 0.00 10

4+
1 Ex 1.94 1.66 1.61 1.77 1.86

4+
1 Qs 59 43 −53 63

B(E2 : 4+
1 → 2+

1 ) 590 419 565 810
4+

2 Ex 2.55 1.98 2.28 2.37 2.79
4+

2 Qs −51 −42 53 −14
B(E2 : 4+

2 → 2+
2 ) 510 354 565 154

4. 68Se: The double platform

The structure of N = Z even nuclei from A = 72 to 84
is described by piling up (gds)4 blocks on top r12

3 , i.e., on
top of either the oblate and prolate ground-state bands—
corresponding to the (12, 0) and (0, 12) SU3 representations—
of 68Se, which becomes a common “double platform” (refer
to Fig. 3). Hence the importance of this nucleus to fix the e0

effective charge.
From Table I the estimate Q0/b

2 = ±33.2, i.e., B(E2 :
2+ → 0+) ≈ 414 e2 fm4 , consistent the q · q numbers in
Table VII, which also collects JUN45 results in r3, the full pf
GXPF1A and KB3GR ones (labeled pf and PF , respectively)
and data including the only experimentally known B(E2 :
2+ → 0+) = 440(60) e2 fm4.

With the exception of the B(E2 : 2+
2 → 2+

1 ) the calcula-
tions in r3 and pf are quite consistent, with enhancement
factors F ≈ 1.16 and 1.38 for the q · q and JUN45 numbers,
respectively. The KB3GR interaction yields somewhat better
spectra than GXPF1A, and similar quadrupole properties except
for the J = 2+

2 and 4+
2 states that are more mixed for the latter.

Using the 2�ω value e0 = 1.77 [14], the 0�ω contribution
increases it to e0 = 1.77

√
F ≈ 2.1 ± 0.1. When gds particles

come into play their quadrupole operators will also couple
with the J = 2+ state in 56Ni, though more weakly owing to
larger norm denominators [see Eqs. (9) and (17)]. It is hoped
that the associated suppression can be accommodated by the
proposed estimate.

The JUN45 calculation in r3g leads to a ground state that is
60% 0p-0h, 30% 2p-2h, and 10% 4p-4h. As can be gathered
from Tables I and II, these admixtures bring no extra oblate
coherence, but with the same numbers prolate contributions
could make a difference in a full r3gds calculation. VAMPIR

calculations [33] indicate substantial oblate-prolate mixing in
the ground-state band. Further data on this nucleus could be
of interest.

TABLE VIII. Properties of rk
3 (gds)l configurations. Total (E),

quadrupole (Eq ), and single-particle (hsp) energies from Eq. (18)
with ζ = 0, in MeV; quadrupole moment Q4 = 〈2q20(4)〉; BE2 =
B(E2 : 2+ → 0+) in e2 fm4 from Eq. (17); β = 8 in Eq. (14). For
prolate states Q4 is the calculated one. For oblate states the space
is rk

3 (g)l , so εr3 = 0.0 and Q4 (not shown) is from Table II. Q3

is always from Table II. Energies of triaxial states are in boldface.
Single-particle energies in MeV: εi = 0.0, 3.0, and 4.0 [0.0, 4.0, and
5.0] for i = g, d, s, respectively, and εgr = 2.5 [2.0]. Numbers in
square brackets apply to the last two lines only.

k l A E −Eq hsp Q3 Q4 BE2

12 4 72 −12.29 25.53 3.24 30.20 23.00 1225
16 0 72 −8.37 8.37 0.0 324
12 4 72 −10.63 20.63 0.0 939
12 8 76 −12.29 40.05 7.76 30.20 41.17 2212
16 4 76 −2.46 15.62 3.15 20.72 22.85 867
14 6 76 −4.90 19.90 0.0 987
16 4 76 −6.23 16.23 0.0 805
12 12 80 −0.30 47.01 16.71 30.20 49.15 2792
16 8 80 1.76 27.45 7.69 20.72 41.17 1733
18 6 80 −0.04 15.04 0.0 823
12 16 84 5.91 51.92 17.82 30.20 54.71 3271
16 12 84 13.47 33.20 16.67 20.72 49.01 2240
20 8 84 6.05 13.95 0.0 840
12 16 84 3.02 51.25 22.26 30.20 54.05 3223
20 8 84 2.05 13.95 0.0 840

B. The central region: A = 72 to 84

Let us recast E in Eq. (17) so as to separate the two basic
contributions to the monopole term Hm,

E =
∑

εi=g,d,s〈ni〉 + l(εg − εr3 )

−�ωκ

(
Q3

15
+ Q4

23

)(
Q3 + ζ

15
+ Q4 + ζ

23

)

= hsp + lεgr + Eq, (18)

where we have introduced the notations used in Table VIII—
the core of this study— which lists the properties of the
dominant and subdominant prolate and oblate states.

To ascertain the stability of the estimates, all the calcu-
lations, done with ζ = 0, have been redone for ζ = 3. The
examples that follow are for A = 84, which involves the largest
magnitudes for hsp, lεgr , and Eq and hence, presumably, the
largest uncertainties.

For ζ = 0 → 3 the energies E = 5.91, 13.47, and 6.05 in
Table VIII go to 4.03, 11.89, and 5.0, respectively, leaving
unchanged the qualitative conclusions that may be drawn.

The evolution of the monopole is another source of uncer-
tainty: The εi and εgr numbers are suggested by GEMO [34]
at the beginning of the region. As the g filling increases, the
orbit will separate from its ds partners and come closer to
the r3 space. To simulate this effect, in the last two lines
of Table VIII the single-particle energies are changed to the
bracketed values in the caption. As a consequence the energies
at E = 5.91 and 6.05 change to 3.02 and 2.05, respectively.
Again the qualitative conclusions are not affected.
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These results for 84Mo are typical and illustrate two
important points.

(1) For prolate states B(E2 : 2+ → 0+) and 〈2q20〉 are
very unsensitive to monopole behavior and hence
remain close to their theoretical quasi + pseudo-SU3
maxima. In our example Q4 = 54.71 and 54.05 against
the 55.88 maximum.

(2) Energies of prolate states are very sensitive to the
single-particle field Hsp. In our example there is a
shift of some 4.5 MeV: hsp = 17.82 vs 22.26 MeV.
However, the relative positions of the states remain
fairly stable.

Examine now what conclusions can be drawn from
Table VIII.

72Kr. This is the only species where B(E2 : 2+ → 0+) are
close for prolate and oblate candidates. Probable coexistence.

76Sr. There is a single candidate. It is an experimentally
superb rotor with good J (J + 1) sequence, in perfect agree-
ment of Table VIII with a recent measure: B(E2,2+ → 0+) =
2220(270) e2 fm4 [35].

80Zr. The lowest state is expected to gain some 4 MeV
because of triaxiality and the observed rotational spectrum
seems to guarantee B(E2 : 2+ → 0+), close to the prediction.
However, the very low-lying oblate state may blur the picture.
Moreover, the prolate 8p-8h (and a 10p-10h, not shown) are
also close and triaxial. Finally, the frustrated doubly magic
N = Z = 40 is at 0 MeV. This is a very interesting nucleus.

84Mo. There is a strong hint of coexistence, even triple
coexistence through gains owing to triaxiality of the second
prolate candidate.

Except for 76Sr, coexistence is expected in the other nuclei
and is examined in Sec. VI.

C. The r3g calculations

Calculations in the (r3g)n spaces have been carried out for
all n. We concentrate on results for A � 80. In particular, 80Zr
and 84Mo are mainly of interest in lending support to a basic
observation about oblate bands.

Contrary to prolate states that privilege maximizing the
deformation, the oblate bands give precedence to mixing
that reduces it. As a consequence, our schematic estimates
overestimate 〈2q20〉 and B(E2 : 2+ → 0+) and underestimate
energies.

1. 80 Zr and 84 Mo

In Table IX the extracted Q0 ≈ 180 is definitely lower than
the 6p-6h number from Table II, Q0 ≈ (19 + 23 + 3)b2 ≈ 203
e fm2 . The wave functions have 22% 4p-4h, 44% 6p-6h, and

TABLE IX. 80Zr. Results of the full (1.1 × 1010-dimensional) r3g

calculation with JUN45 (E’s in MeV, Q in e fm2 and B(E2 : 2+ →
0+) in e2 fm4).

J E(2+) Qs Q0s B(E2) Q2
0t

2 0.393 51 −179 642 (180)2

TABLE X. 84Mo. Properties of the yrast band; experiment vs
calculations in the r3g space with the JUN45 interaction: To the left,
truncated up to four holes in r3; to the right, complete space [E in MeV,
Q in e fm2, and B(E2) in e2 fm4]. Ex and Et stand for experimental
and theoretial energies respetively.

J Ex Et −Q0s B(E2) −Q0t Et −Q0s B(E2) −Q0t

0 0.0 0.0 0.00
2 0.44 0.17 194 762 196 0.29 189 708 188
4 1.12 0.56 190 1081 195 0.84 189 1020 189
6 2.01 1.15 184 1179 194 1.60 189 1118 189

28% 8p-8h. Mixing with prolate states nearby may be at the
origin of the reduction, as confirmed in Table X for 84Mo.

The ground-state band is dominated now by the r−4
3 g8

configuration. From Table II, Q0 ≈ (21 + 20 + 3)b2 = 44 ×
4.61 ≈ 203 e fm2, not inconsistent with the truncated calcula-
tions (left part of the table) that exhibit good rotational features.
Once the full space is incorporated (right part of the table),
the energies depart from the J (J + 1) sequence, while the
quadrupole properties, still those of a rotor, have suffered an
erosion owing to the inclusion of prolate states as suggested in
80Zr.

2. 88 Ru

In 88Ru we come at last to a genuine r3g nucleus. (Note that
for A � 88 most numerical results reported below duplicate
those of the Rutgers group [36].) Table XI corresponds to an
yrast oblate band exhibiting 50% r−4

3 g12 oblate dominance.
This is not obvious, because g12 is now beyond midshell and
the largest 〈2q20〉 is prolate. However, the oblate 〈2q20〉 in r−4

3
is sufficiently strong to dominate but the prolate admixtures
distort and reduce the original 〈2q20〉 = −(18.66 + 20.24) and
Q0 ≈ −182 to Q0s ≈ −125 and Q0t ≈ −160 in Table XI. It is
seen that in this nucleus the prolate-oblate competition within
the r3g space is played up. 92Pd will bring further news.

3. 92 P d

The authors’ interest in heavy N = Z nuclei was sparked by
the first measurement of the 92Pd spectrum, accompanied by
an interpretation that associated it with a condensate of (g2

9/2)
neutron-proton pairs coupled to maximum J = 9 [25,37,38].
This raised two issues: that of possible coupling schemes in a
g12 space and that of possible dominance of this configuration.

TABLE XI. Properties of the yrast band of 88Ru: experiment vs
calculations in the r3g space with the JUN45 interaction [E in MeV,
Q in efm2, and B(E2) in e2 fm4].

J E(exp) E(th) Qs B(E2 ↓)(th)

0+
1 0.0 0.0

2+
1 0.62 0.56 37 492

4+
1 1.42 1.31 44 766

6+
1 2.38 2.12 47 888

8+
1 3.48 2.88 52 980
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TABLE XII. Properties of 92Pd. Energies in MeV, Q in e fm2 and
B(E2) in e2 fm4. Detailed explanation in text.

1 2 3 4 5 6 7 8 9 10
J Ex Et Con qq � B(E2) B(E2)r3g Qs Qs,r3g

0 0.0 0.0 0.00 0.00 0.99 – – – –
2 0.874 0.84 0.26 0.22 0.99 225 304 −28 −3.63
4 1.786 1.72 0.58 0.62 0.99 316 382 −34 −8.20
6 2.563 2.52 0.85 1.20 0.98 340 364 −31 −2.77

Table XII —which we comment column by column—sums up
sufficient information to resolve both issues:

(1) J value;
(2) experimental spectrum, in very good agreement

with 3;
(3) JUN45 spectrum;
(4) spectrum of the condensate defined by −Hcon =

P0 + 9P9, where P0 and P9 are the pairing Hamil-
tonians for J = 0 and 9;

(5) spectrum of the quadrupole force scaled so as to
have unit J = 9 matrix element, close to that of the
condensate (within arbitrary scaling factor);

(6) overlap, � = 〈qq|con〉2, of the wave functions
indicating that the condensate and quadrupole
coupling schemes are identical (the use of P9 should
be understood as an artifact to define a coupling
scheme; as a Hamiltonian it is better avoided);

(7, 8) a Hamiltonian −H ≈ 0.6qq + 0.4P0 yields g12

energies that are close to the exact ones and B(E2)
that are very close to the pure qq values in column
7 and not too far from the exact ones in column 8,
which may encourage the idea of g12 dominance in
spite of its smallish 30% contribution to the exact
wave function (however, this idea is not supported
by the disparity of Qs in columns 9 and 10);

(9, 10) spectroscopic Qs for qq (9) and JUN45 [17] (10).

The situation is reminiscent of that of f n
7/2 configurations

that yield apparently reasonable energetics and transition rates
but quadrupole moments of the wrong sign [39].

The pattern we started following at 80Zr—of oblate states
progressively eroded by prolate mixtures—now reaches its
climax with the Pyrrhic victory of prolate states practically
canceled by oblate mixtures.

4. 96Cd

For this nucleus, the calculations in the r3g and g spaces
with JUN45 give results that are much closer than in 92Pd,
both for the energies and for the B(E2) properties and the
discrepancies in the spectroscopic quadrupole moments are
gone except for the 6+ state.

We have collected some results in Table XIII, adding
those from the full sdg space using the Nowacki-Sieja
interaction [40], which describes the superallowed decay
of 100Sn [41] and the B(E2) systematics of the light Sn
isotopes [42]. The results for the energies, B(E2) and Q values
vary little between g and r3g, pointing to g dominance, not

TABLE XIII. 96Cd. Energies in MeV, Q in e fm2 and B(E2) in
e2 fm4 e2 fm4.

�E B(E2) Qs

J π r3g g9/2 sdg r3g g9/2 sdg r3g g9/2 sdg

0+ 0.0 0.0 0.0
2+ 0.90 0.96 0.77 152 154 327 −19 −23 −37
4+ 1.91 2.10 1.78 203 206 426 −22 −22 −40
6+ 3.02 3.08 2.78 191 159 351 −11 −5 −23
8+ 3.48 3.08 3.24 47 40 65 40 39 55

invalidated by the substantial quadrupole coherence brought
in by the full sdg space calculation as it amounts basically to
an overall scaling.

It is worth mentioning that the latter predicts a 16+ isomer
at 5.3 MeV.

VI. CASE STUDIES, COMPARISONS, AND PERSPECTIVES

The central region calls for some extra comments.

A. Coexistence in 72Kr

Exact (r3g)16 calculations with JUN45 [17] for 72Kr indicate
that—with respect to Table VIII—the gap r12

3 g4 − r16
3 is

underestimated by about 2 MeV, while B(E2 : 2+ → 0+) is
overestimated by 10%. The ground-state band is a nice oblate
rotor with nearly constant Qot ≈ 205 e fm2, good J (J + 1)
sequence with the 2+ at 350 keV—half the observed value—
while the 4+ at 1.1 MeV is close to the observed 1.32 MeV,
while B(E2 : 2+ → 0+) = 850 e2 fm4 against a measured
999(129) e2 fm4 [43]. In this reference it is argued that the
ground band is oblate. A suggestion that may gain some
support from the shape of the Gamow-Teller β+ decay strength
function [44]. Recent measures [45] yield B(E2 : 21 → 01) =
810(150) e2 fm4 (too small to be prolate) and B(E2 : 41 →
21) = 2720(550) e2 fm4 (too large to be oblate, even large
for prolate in view of theoretical maximum of 2200 e2 fm4.
(Note that an analysis of Fig. 3 of [45] suggests that the 550
e2 fm4 error bar is underestimated.)

Clearly, some mixing is necessary and to achieve it we
resort to the space which is the largest we could treat and the
smallest that could cope with prolate states, i.e., r16−t

3 (gd)t ,
tractable for t � 4. The interaction chosen is R3GD, i.e., JUN45
supplemented by matrix elements involving the d orbit from
the LNPS set [46].

First, two calculations at fixed t = 4 were made. If the
single-particle energy εd is set 1.76 MeV above εg , the ground-
state band is solidly prolate. If the splitting is increased by
0.5 MeV the lowest J = 0+ and 2+ become oblate, but the
lowest 4+ is prolate and nearly degenerate with its oblate
counterpart. The two bands simply slide past, ignoring each
other. To achieve any mixing, extreme fine tuning is required.

Things change when configuration mixing is allowed. In
Table XIV, to the left, is the result at fixed t = 4 with prolate
ground state (εd − εg = 1.76 MeV). The choice is made to
present the two bands in their pure form. To the right, the
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TABLE XIV. Properties of the yrast bands of 72Kr calculated in
the r3gd space with the R3GD interaction (see text) [E’s in MeV, Q in
e fm2, and B(E2) ≡ B(E2 : Ji → Jf x) in e2 fm4]. Bottom: first line,
measured values from [45] (error bars subject to caution as explained
in text); second line, t � 4 results boosted as explained in the text.

t = 4 B(E2) t � 4 B(E2)

Ji Ex Qs Jf 1 Jf 2 Ex Qs Jf 1 Jf 2

01 0.0 0.00
02 0.24 0.30
21 0.28 −65 1089 6 0.46 −54 586 372
22 0.56 58 3 897 0.66 45 103 536
41 0.83 −77 1509 1 1.05 −75 1387 75
42 1.23 69 0 1286 1.43 64 36 1093
B(E2 : 21 → 01) = 810(150), B(E2 : 41 → 21) = 2720(550)
t � 4 × 1.4; B(E2 : 21 → 01) = 740, B(E2 : 41 → 21) = 1750

t � 4 results show prolate dominance with strong ground-
state mixing, using εd − εg = 2.26 MeV, which yields oblate
ground state at fixed t = 4. While B(E2 : 2+ → 0+) is halved,
the B(E2 : 4+

1 → 2+
1 ) changes by less than 10%. To estimate

the effect of omitting the s orbit, we redo calculations as in
Table VIII: εd = 2 MeV and no s orbit, and then add εs = 3
MeV. The rates are boosted 15%, and a further 10% may come
from e0 = 2.1, as suggested near the end of Sec. V A 4, for a
total of 26%. At the bottom of Table XIV the corresponding
boosted values are compared with the observed ones.

Let us add two entries to the list of calculations
quoted by Iwasaki and co-workers [45], which fall in two
groups.

(i) Those that mix prolate and oblate states. They include
VAMPIR [47]—which produces thorough mixing as
a reassessment of oblate dominance previously pre-
dicted [23]—and the relativistic mean-field work of Fu
et al. [48], close to the present results: strong 0+

1 ± 0+
2

mixing and strong prolate dominance in 2+
1 .

(ii) Those that predict oblate ground bands. They include
Skyrme [24,49] and Gogny [50,51] (beyond) mean-
field approaches and a sophisticated form [52] of
the Kumar-Baranger model in two major oscillator
shells [21].

In Sec. VI B it is explained why a majority of calculations
privilege the oblate solution.

Digression. Gamow-Teller strength calculated with the
present wave functions agrees nicely with observation.

B. Monopole vs single-particle field

Most mean-field-based calculations have single-particle
spectra in which the d orbit is some 5 MeV above the g one
(as in Fig. 1 of Ref. [53]), i.e., some 2 MeV above the values
in Table VIII. As emphasized in Ref. [11] and Sec. II, Hm is
a strict two-body operator, but its action can be simulated by
single-particle fields—provided it is understood that they vary
as a function of the orbital occupancies—the “monopole drift”
mostly owing to the filling of the largest j orbit in a major
shell [54]. In the problems studied here, the r3 space can be

viewed as frozen, but the gds orbits are subject to drift. Above
56Ni the r3 orbits are nearly degenerate and the gds ones
are close to an l · s sequence. There is no direct experimental
evidence for the position of the ds orbits around A = 68, but
we can rely on the GEMOprogram [34], which accounts for
the particle or hole spectra on all known double magics to
within 200 keV and confirms the l · s behavior with the d orbit
2–3 MeV above the g one, which upon filling comes closer to
r3 and becomes detached from ds, which move up to join their
r4 partners to form a pseudo-LS scheme.

In 72Kr, as elsewhere, the structure of the states is
unsensitive to monopole details but their energies are not,
which explains why so many calculations place the prolate
state too high.

C. Potential energy surfaces in 80Zr

In the comments to Table VIII it was noted that to the three
states included for 80Zr one should add a 10p-10h, r14

3 (gds)10

prolate state at about 1 MeV with B(E2 : 2+ → 0+) ≈ 2100
e2 fm4 and the r24

3 closed shell at 0 MeV. Because the three
prolate states are triaxial they will gain energy (of the order of
3–4 MeV according to Table IV) and dominate the low-lying
spectrum. In the thorough study of Rodrı́guez and Egido with a
Gogny force (Ref. [53], Fig. 3) this is very much the case. The
main discrepancy with their work is in the positioning of the
closed shell, which in the potential energy surface (Ref. [53],
Fig. 2) comes some 4 MeV below the deformed minima,
which we attribute to underbinding of the latter owing to the
monopole effect described above. Other calculations for 80Zr
include Refs. [23,24,55].

D. Coexistence in 84Mo

According to Refs. [23,24] the ground state of 84Mo is
prolate and spherical, respectively. Table VIII suggests three
candidates:

(I) a splendid axial rotor (all “platforms” filled in the ZRP
diagrams in Fig. 3), expected to have a 2+ well below
the observed 440 keV;

(II) a splendid oblate rotor (Table X) whose 2+ is way too
low;

(III) a triaxial rotor.

No direct information is available, but 82Zr, whose behavior
is likely to be similar, provides a hint. Collating data from
Refs. [56–58], the ground state starts with 2+ at 407 keV
and B(E2 : 2+ → 0+) ≈ 1900 e2 fm4, is interrupted by a
definitely smaller B(E2 : 4+ → 2+) at 700–1200 e2 fm4, and
then resumes with a fairly constant Q0, albeit smaller than the
one extracted from B(E2 : 2+ → 0+). Our guess is prolate
dominance in 84Mo quenched by mixing.

E. Beyond intrinsic states

In mean-field studies, “going beyond” amounts to project-
ing and moving in the β-γ plane. Here we do not have a
potential energy surface but a space of discrete intrinsic states:
The numerous local minima, revealed by Tables I and II,
constitute a natural basis in which pairing will act as mixing
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agent. We do not know yet how to do the mixing, but we
may call attention to a way of dealing with each individual
state.

Diagonalize separately in the quasi and pseudo spaces and
then recouple in the product space. There is nothing new with
this “weak-coupling” idea except one thing: The quadrupole
force(s) used in each space must be boosted as much as
necessary to reproduce the quadrupole moments dictated by
the MZ calculations.

VII. LOOKING BACK AND FORWARD

The paper contains at least three significant results: (A)
the numerical suggestion that pseudo-SU3 may behave as
an exact symmetry (Table III) using the true quadrupole
force rather than its pseudo counterpart; (B) the pf to r3

reduction in Sec. V A (we have seized a unique opportunity
to study the projection from a very large realistic space into
a sensible model one); (C) most important, the operation
of the quasi-pseudo-SU3 tandem, which was shown to ac-
count for the onset of rotational motion in the rare earths,
involving the r4hfp (proton) and r5igds (neutron) EEI spaces
[3].

The formal basis of this successful estimate was not
clear at the time. Now it can be ascribed to Nilsson-SU3
self-consistency that puts together the two classics in the
field: the Bohr-Mottelson rotational model [13] plus Elliott’s
quadrupole force and SU3 symmetry [1], via a reinterpretation
of the Nilsson model [2]. Equation (19) makes explicit the
connections

H = Hsp − �ωδ

3
2q0 ≡ Hsp − β�ωκ

〈2q0〉
N 2

2q0. (19)

On the left-hand side, the Nilsson problem amounts to calcu-
lating single-particle energies in the presence of a deformation
δ. The constraints on δ were left undefined and the earliest suc-
cessful calculation of quadrupole moments relied on volume
conservation [59]. It was much later that the Nilsson orbits
could be associated with an energy minimization [21,60].

On the right-hand side of Eq. (19) we have summed up the
self-consistent formulation—the MZ Eqs. (13) and (14)—with
its built-in constraint: The input 〈2q20〉 must coincide with the
output 〈2q20〉. The emphasis is on the quadrupole moment,
not the energy: Nilsson orbits are sensitive to the central field,
while “〈2q20〉 orbits,” i.e., the ZRP diagrams in Fig. 3, are
nearly constant, reflecting the underlying operation of pseudo-
quasi-SU3. The resulting interpretive framework explains the
appearance of “closed shells” [the (λ0) representations], the
natural prolate dominance, the importance of “triaxiality” [the
(λμ) representations], and the abrupt departure from the pf
regime beyond A = 68.

The open task is to put the energetics on firmer ground,
while trying to keep the approach simple, or, at least,
computationally doable.
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