482 research outputs found

    The role of alkane coordination in C–H bond cleavage at a Pt(II) center

    Get PDF
    The rates of CFormula H bond activation for various alkanes by [(N–N)Pt(Me)(TFEd3)]+ (N Formula N = ArFormula NFormula C(Me)Formula C(Me)Formula NFormula Ar; Ar = 3,5-di-tert-butylphenyl; TFE-d3 = CF3CD2OD) were studied. Both linear and cyclic alkanes give the corresponding alkene-hydride cation [(N–N)Pt(H)(alkene)]+ via (i) rate determining alkane coordination to form a CFormula H {sigma} complex, (ii) oxidative cleavage of the coordinated CFormula H bond to give a platinum(IV) alkyl-methyl-hydride intermediate, (iii) reductive coupling to generate a methane {sigma} complex, (iv) dissociation of methane, and (v) beta-H elimination to form the observed product. Second-order rate constants for cycloalkane activation (CnH2n), are proportional to the size of the ring (k ~ n). For cyclohexane, the deuterium kinetic isotope effect (kH/kD) of 1.28 (5) is consistent with the proposed rate determining alkane coordination to form a CFormula H {sigma} complex. Statistical scrambling of the five hydrogens of the Pt-methyl and the coordinated methylene unit, via rapid, reversible steps ii and iii, and interchange of geminal CFormula H bonds of the methane and cyclohexane CFormula H {sigma} adducts, is observed before loss of methane

    Slip Modulus of Cold-formed Steel Members Sheathed with Wood Structural Panels

    Get PDF
    Cold-formed steel framing sheathed with wood structural panels is a common method of construction for wall, roof and floor systems in cold-formed steel structures. Since wood structural panels are attached with screws at relatively close spacing, a certain amount of composite behavior will be present. The benefit of composite behavior is not currently being taken advantage of in the design of these structural systems. While composite effects are present, they are not yet being accounted for in design due to a lack of statistical data. To determine the amount of composite action taking place in these systems, the slip modulus between steel and wood is required. The slip modulus reflects the amount of shear force able to be transferred through the screw connection, to either member of the composite system. This paper presents the results of a study conducted to determine values of the slip modulus for varying thicknesses of cold-formed steel and plywood sheathing. Shear tests were conducted and the slip moduli were determined based on ISO 6891 and ASTM D1761. Compared with data from a previous preliminary study performed by others, the slip modulus values determined from these tests were deemed reasonable. The determination of the slip modulus will lead to the ability to calculate a composite factor. Determination of a composite factor will allow cold-formed steel wood structural panel construction to become more economical due to the available increase in bending strength

    Inbreeding in cattle

    Get PDF
    The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    Insights from Amphioxus into the Evolution of Vertebrate Cartilage

    Get PDF
    Central to the story of vertebrate evolution is the origin of the vertebrate head, a problem difficult to approach using paleontology and comparative morphology due to a lack of unambiguous intermediate forms. Embryologically, much of the vertebrate head is derived from two ectodermal tissues, the neural crest and cranial placodes. Recent work in protochordates suggests the first chordates possessed migratory neural tube cells with some features of neural crest cells. However, it is unclear how and when these cells acquired the ability to form cellular cartilage, a cell type unique to vertebrates. It has been variously proposed that the neural crest acquired chondrogenic ability by recruiting proto-chondrogenic gene programs deployed in the neural tube, pharynx, and notochord. To test these hypotheses we examined the expression of 11 amphioxus orthologs of genes involved in neural crest chondrogenesis. Consistent with cellular cartilage as a vertebrate novelty, we find that no single amphioxus tissue co-expresses all or most of these genes. However, most are variously co-expressed in mesodermal derivatives. Our results suggest that neural crest-derived cartilage evolved by serial cooption of genes which functioned primitively in mesoderm

    Devils Tower National Monument: Historic Resource Study

    Get PDF
    This study presents historical contexts associated with Devils Tower National Monument (DETO). First, we describe the Tower itself. The following five chapters elucidate themes, better known as historical contexts. The first theme describes how Native Americans occupied the region since about 13,000 years before present. Evidence is clear of their continuous presence in the area. Eras of exploration and settlement follow. The establishment of Devils Tower as the nation’s first national monument, created by Theodore Roosevelt’s executive order under the Antiquities Act, occurred in 1906. During the 1930s, development of the park continued with some twists unique to Devils Tower. The CCC era is of particular interest for National Park Service sites across the nation, and Devils Tower is no exception. MISSION 66 improvements transformed the monument and laid out a modernized, standardized park landscape in Devils Tower. The history of climbing also has a significant and unique place in the history of Devils Tower. Buildings and structures dating from 1973 are now of sufficient age to be considered for listing on the National Register of Historic Places. We discuss the 1970s in several places in these narratives and offer a theme and historical context for the 1970s to the present. What is particularly significant for Devils Tower National Monument is how nature and culture come together in every age with the result that people perceive the Tower differently, draw various inspirations from it, and experience Bear Lodge/Devils Tower in unique ways.This is published as Devils Tower National Monument: Historic Resource Study. National Park Service, Intermountain Office, Santa Fe, New Mexico, 2023. Document is available online at the National Park Service History Electronic Library & Archive: http://npshistory.com/index.htm. Posted with permission

    Head segmentation in vertebrates

    Get PDF
    Classic theories of vertebrate head segmentation clearly exemplify the idealistic nature of comparative embryology prior to the 20th century. Comparative embryology aimed at recognizing the basic, primary structure that is shared by all vertebrates, either as an archetype or an ancestral developmental pattern. Modern evolutionary developmental (Evo-Devo) studies are also based on comparison, and therefore have a tendency to reduce complex embryonic anatomy into overly simplified patterns. Here again, a basic segmental plan for the head has been sought among chordates. We convened a symposium that brought together leading researchers dealing with this problem, in a number of different evolutionary and developmental contexts. Here we give an overview of the outcome and the status of the field in this modern era of Evo-Devo. We emphasize the fact that the head segmentation problem is not fully resolved, and we discuss new directions in the search for hints for a way out of this maze

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Evolutionary Changes in the Complexity of the Tectum of Nontetrapods: A Cladistic Approach

    Get PDF
    Background: The tectum is a structure localized in the roof of the midbrain in vertebrates, and is taken to be highly conserved in evolution. The present article assessed three hypotheses concerning the evolution of lamination and citoarchitecture of the tectum of nontetrapod animals: 1) There is a significant degree of phylogenetic inertia in both traits studied (number of cellular layers and number of cell classes in tectum); 2) Both traits are positively correlated accross evolution after correction for phylogeny; and 3) Different developmental pathways should generate different patterns of lamination and cytoarchitecture. Methodology/Principal Findings: The hypotheses were tested using analytical-computational tools for phylogenetic hypothesis testing. Both traits presented a considerably large phylogenetic signal and were positively associated. However, no difference was found between two clades classified as per the general developmental pathways of their brains. Conclusions/Significance: The evidence amassed points to more variation in the tectum than would be expected by phylogeny in three species from the taxa analysed; this variation is not better explained by differences in the main course of development, as would be predicted by the developmental clade hypothesis. Those findings shed new light on th

    Comprehensive catecholaminergic projectome analysis reveals single-neuron integration of zebrafish ascending and descending dopaminergic systems

    Get PDF
    Essential components of animal behaviour are modulated by dopaminergic (DA) and noradrenergic circuitry. In this study, we reveal at cellular resolution the complete set of projections ('projectome') of every single type of DA and noradrenergio neurons in the central nervous system of zebrafish larvae. The most extensive DA projections are established by posterior tubercular otp-dependent neurons, with individual somata integrating the ascending DA system, the descending diencephalospinal, as well as the endohypothalamic circuitry. These findings suggest a major role in the modulation of physiology and behaviour for otp-dependent DA neurons, which correlate with the mammalian A11 group. We further identified an endogenous subpallial DA system that not only provides most of the local DA projections, but also connects to the ventral diencephalon. The catecholaminergic projectome map provides a framework to understand the evolution and function of these neuromodulatory systems
    • …
    corecore