51 research outputs found

    Chemical and structural changes of pretreated empty fruit bunch (EFB) in ionic liquid-cellulase compatible system for fermentability to bioethanol

    Get PDF
    The pretreatment of empty fruit bunch (EFB) was conducted using an integrated system of IL and cellulases (IL-E), with simultaneous fermentation in one vessel. The cellulase mixture (PKC-Cel) was derived from Trichoderma reesei by solid-state fermentation. Choline acetate [Cho]OAc was utilized for the pretreatment due to its biocompatibility and biodegradability. The treated EFB and its hydrolysate were characterized by the Fourier transform infrared spectroscopy, scanning electron microscopy, and chemical analysis. The results showed that there were significant structural changes in EFB after the treatment in IL-E system. The sugar yield after enzymatic hydrolysis by the PKC-Cel was increased from 0.058 g/g of EFB in the crude sample (untreated) to 0.283 and 0.62 ± 06 g/g in IL-E system after 24 and 48 h of treatment, respectively. The EFB hydrolysate showed the eligibility for ethanol production without any supplements where ethanol yield was 0.275 g ethanol/g EFB in the presence of the IL, while lower yield obtained without IL-pretreatment. Moreover, it was demonstrated that furfural and phenolic compounds were not at the level of suppressing the fermentation process

    The environmental impacts of palm oil in context

    Get PDF
    Delivering the Sustainable Development Goals (SDGs) requires balancing demands on land between agriculture (SDG 2) and biodiversity (SDG 15). The production of vegetable oils, and in particular palm oil, illustrates these competing demands and trade-offs. Palm oil accounts for 40% of the current global annual demand for vegetable oil as food, animal feed, and fuel (210 million tons (Mt)), but planted oil palm covers less than 5-5.5% of total global oil crop area (ca. 425 Mha), due to oil palm’s relatively high yields5. Recent oil palm expansion in forested regions of Borneo, Sumatra, and the Malay Peninsula, where >90% of global palm oil is produced, has led to substantial concern around oil palm’s role in deforestation. Oil palm expansion’s direct contribution to regional tropical deforestation varies widely, ranging from 3% in West Africa to 47% in Malaysia. Oil palm is also implicated in peatland draining and burning in Southeast Asia. Documented negative environmental impacts from such expansion include biodiversity declines, greenhouse gas emissions, and air pollution. However, oil palm generally produces more oil per area than other oil crops, is often economically viable in sites unsuitable for most other crops, and generates considerable wealth for at least some actors. Global demand for vegetable oils is projected to increase by 46% by 20509. Meeting this demand through additional expansion of oil palm versus other vegetable oil crops will lead to substantial differential effects on biodiversity, food security, climate change, land degradation, and livelihoods. Our review highlights that, although substantial gaps remain in our understanding of the relationship between the environmental, socio-cultural and economic impacts of oil palm, and the scope, stringency and effectiveness of initiatives to address these, there has been little research into the impacts and trade-offs of other vegetable oil crops. 65 Greater research attention needs to be given to investigating the impacts of palm oil production 66 compared to alternatives for the trade-offs to be assessed at a global scale

    Application of microwave plasma technology to convert carbon dioxide (CO<inf>2</inf>) into high value products: A review

    Full text link
    The most important challenge faced by mankind in the 21st century is the global warming issues associated with the global energy demand. A sustainable and low carbon-based energy economy must be developed to reduce the dependency on non-renewable fossil fuels. Other than exploring renewable energy technology, such as solar, hydro, and wind, recycling and utilization of carbon dioxide (CO2) in synthesizing of high value-added products is also an alternative solution to mitigate climate change. As a potential technology, the plasma-based decomposition of CO2 has received a lot of interest, especially microwave discharge due to its outstanding ability to produce non-equilibrium plasma with high ionization power, to convert CO2 in an energy-efficient manner, and others. Hence, this paper is written to provide an overview of the microwave plasma technology on CO2 conversion. The basic theory of plasma technology has also been discussed to brief the readers, particularly the non-specialist, on the technical background. The parameters that affect the performance of the CO2 conversion process under microwave discharge such as pressure, microwave power supply, gas flow rate/pattern, co-reactant, and catalyst, are also highlighted. To sum up, the prospects and challenges for the commercialization of CO2 utilization, such as methane(CH4) with CO2 reforming in syngas production, using microwave plasma technology have also been emphasized

    Greenhouse gases utilization: A review

    Full text link
    The excessive global emission of greenhouse gases (mainly carbon dioxide, CO2 and methane, CH4), especially due to the burning of fossil fuel for energy and power generation, is the main cause to the air pollution and greenhouse effect. This has eventually brought many issues, such as climate change and global warming, that will affect the standard life of human beings. Many strategies have been proposed to further reduce the excessive emission of greenhouse gases, including CO2 and CH4 utilization. This method not only reduce the CO2 concentration in the atmosphere, but also producing renewable energy (syngas) at the same time. Hence, CO2 and CH4 utilization is also a promising approach to assist in overcoming the energy crisis due to the increasing population in time. Basically, the utilization of CO2 and CH4 system can be categorized into four: (i) electrochemical reduction, (ii) advanced catalyst system, (iii) photocatalytic reduction, and (iv) plasma technology. In this review paper, the mechanism implemented on the four abovementioned categories and their respective limitations are presented. Besides, future recommendations to optimize the greenhouse gases utilization system for up-scaling purpose is also highlighted

    Progress on Conventional and Advanced Techniques of In Situ Transesterification of Microalgae Lipids for Biodiesel Production

    Full text link
    Global warming and the depletion of fossil fuels have spurred many efforts in the quest for finding renewable, alternative sources of fuels, such as biodiesel. Due to its auxiliary functions in areas such as carbon dioxide sequestration and wastewater treatment, the potential of microalgae as a feedstock for biodiesel production has attracted a lot of attention from researchers all over the world. Major improvements have been made from the upstream to the downstream aspects related to microalgae processing. One of the main concerns is the high cost associated with the production of biodiesel from microalgae, which includes drying of the biomass and the subsequent lipid extraction. These two processes can be circumvented by applying direct or in situ transesterification of the wet microalgae biomass, hence substantially reducing the cost. In situ transesterification is considered as a significant improvement to commercially produce biodiesel from microalgae. This review covers the methods used to extract lipids from microalgae and various in situ transesterification methods, focusing on recent developments related to the process. Nevertheless, more studies need to be conducted to further enhance the discussed in situ transesterification methods before implementing them on a commercial scale

    Optimization of ultrasound-assisted oil extraction from Canarium odontophyllum kernel as a novel biodiesel feedstock

    Full text link
    In this novel study, oil was extracted from the kernel of an exotic indigenous species known as Canarium odontophyllum via an ultrasound-assisted process. The extraction process was optimized using response surface methodology (RSM) based on the Box-Behnken experimental design (BBD). The optimal conditions for the investigated parameters were determined as ultrasound amplitude level: 38.30%, ratio of n-hexane to kernel powder: 50:1 in mL/g, extraction time: 45.79 min, resulting in an oil extraction yield of 63.48%. For verification purposes, experiments were conducted using the same optimized values of the investigated parameters which resulted in the average oil yield of 63.27% and this prove the reliability of the regression model. The extracted oil's fatty acid composition was obtained using a gas chromatograph (GC) equipped with flame-ionization detection (FID). The low acid value of the extracted oil is another interesting finding. This is important because it circumvents pretreatment processes such as degumming and esterification prior to the transesterification process. Biodiesel was produced from the oil via ultrasound-assisted transesterification, with a yield of 95.2%. Physiochemical properties of the C. odontophyllum biodiesel were determined, and it was found that all the tested properties comply with fuel specifications based on ASTM D6751 and EN 14214 standards. Significant savings of 52.3% and 80.9% in energy consumption and extraction time, respectively were achieved via ultrasound-assisted extraction compared with the conventional Soxhlet extraction. This study establishes the foundation and the need to further explore the usage of C. odontophyllum as a potential feedstock for biodiesel production

    Multiple-objective optimization in green fuel production via catalytic deoxygenation reaction with NiO-dolomite catalyst

    No full text
    This study investigates the multi-objective optimization of reaction parameters with response surface methodology (RSM) with central composite design (CCD) for the deoxygenation of waste cooking oil (WCO) over low cost-modified local carbonate mineral catalyst (NiO-Malaysian dolomite) into green fuel in the range of gasoline, kerosene and diesel. RSM was performed to study the effect of four operating parameters: temperature (390–430 °C), time (30–120 min), catalyst loading (1–10 wt%) and nitrogen flow rate (50–300 cm3/min). The results indicate that for maximum WCO conversion, deoxygenated oil and product yield, the optimum parameters of the deoxygenation reaction were at 410 °C, 60 min, 5.50 wt% of catalyst loading, and 175 cm3/min of N2. The green fuel properties testing (density, kinematic viscosity, flash point, cloud point, pour point, sulfur, carbon residue, cetane index, oxidation stability, acid value, iodine value and calorific value) and GC–MS analysis show that the product oil meets almost all the requirements of green diesel fuel and hydrocarbon biofuel standards for fuel application while the quadratic model proposed agreed with the experimental data (95% confidence) which indicates that the RSM can adequately predict the reaction products
    corecore