845 research outputs found

    The Munich Near-Infrared Cluster Survey (MUNICS) - IX. Galaxy Evolution to z ~ 2 From Optically Selected Catalogues

    Full text link
    (Abridged) We present B, R, and I-band selected galaxy catalogues based on the Munich Near-Infrared Cluster Survey (MUNICS) which, together with the K-selected sample, serve as an important probe of galaxy evolution in the redshift range 0 < z < 2. Furthermore, used in comparison they are ideally suited to study selection effects. The construction of the B, R, and I-selected photometric catalogues, containing ~9000, ~9000, and ~6000 galaxies, respectively, is described in detail. The catalogues reach 50% completeness limits for point sources of B ~ 24.5mag, R ~ 23.5mag, and I ~ 22.5mag and cover an area of about 0.3 square degrees. Photometric redshifts are derived for all galaxies with an accuracy of dz/(1+z) ~ 0.057. We investigate the influence of selection band and environment on the specific star formation rate (SSFR). We find that K-band selection indeed comes close to selection in stellar mass, while B-band selection purely selects galaxies in star formation rate. We use a galaxy group catalogue constructed on the K-band selected MUNICS sample to study possible differences of the SSFR between the field and the group environment, finding a marginally lower average SSFR in groups as compared to the field, especially at lower redshifts. The field-galaxy luminosity function in the B and R band as derived from the R-selected sample evolves out to z ~ 2 in the sense that the characteristic luminosity increases but the number density decreases. This effect is smaller at longer rest-frame wavelengths and gets more pronounced at shorter wavelengths. Parametrising the redshift evolution of the Schechter parameters as M*(z) = M*(0) + a ln(1+z) and Phi*(z) = Phi*(0) (1+z)^b we find evolutionary parameters a ~ -2.1 and b ~ -2.5 for the B band, and a ~ -1.4 and b ~ -1.8 for the R band.Comment: 23 pages, 19 figures; accepted for publication in MNRAS; version with high-resolution figures will be made available at http://www.usm.uni-muenchen.de/people/feulner/munics9/preprint_munics9.pd

    Orbitofrontal cortex and learning predictions of state transitions

    No full text

    Noninvasive mechanical ventilation in high-risk pulmonary infections: a clinical review

    Get PDF
    The aim of this article was to review the role of noninvasive ventilation (NIV) in acute pulmonary infectious diseases, such as severe acute respiratory syndrome (SARS), H1N1 and tuberculosis, and to assess the risk of disease transmission with the use of NIV from patients to healthcare workers. We performed a clinical review by searching Medline and EMBASE. These databases were searched for articles on "clinical trials" and "randomised controlled trials". The keywords selected were non-invasive ventilation pulmonary infections, influenza-A (H1N1), SARS and tuberculosis. These terms were cross-referenced with the following keywords: health care workers, airborne infections, complications, intensive care unit and pandemic. The members of the International NIV Network examined the major results regarding NIV applications and SARS, H1N1 and tuberculosis. Cross-referencing mechanical ventilation with SARS yielded 76 studies, of which 10 studies involved the use of NIV and five were ultimately selected for inclusion in this review. Cross-referencing with H1N1 yielded 275 studies, of which 27 involved NIV. Of these, 22 were selected for review. Cross-referencing with tuberculosis yielded 285 studies, of which 15 involved NIV and from these seven were selected. In total 34 studies were selected for this review. NIV, when applied early in selected patients with SARS, H1N1 and acute pulmonary tuberculosis infections, can reverse respiratory failure. There are only a few reports of infectious disease transmission among healthcare workers

    The effect of the Cox-maze procedure for atrial fibrillation concomitant to mitral and tricuspid valve surgery

    Get PDF
    ObjectivesAtrial fibrillation (AF) is associated with less favorable outcomes in patients undergoing mitral valve and tricuspid valve surgery. Despite growing evidence on the potential benefits of surgical ablation for AF there is significant variability among surgeons in treatment of AF. The purpose of our study was to assess the effect of the Cox-maze procedure on operative and follow-up outcomes.MethodsIn our prospective study, patients who underwent isolated mitral valve or mitral valve+tricuspid valve surgery without history of AF (n = 506), with untreated AF (n = 75), or with Cox-maze procedure (n = 236) were included (N = 817). Sinus rhythm was captured according to Heart Rhythm Society guidelines. Patients who underwent the Cox-maze procedure were propensity score matched to patients without history of AF resulting in 208 pairs of patients.ResultsOperative outcomes were comparable after propensity score matching (Cox-maze procedure vs no AF) stroke/transient ischemic attack (0.5% vs 0.5%; P = 1.00), renal failure (2.9% vs 1.4%; P = .34), and operative mortality (1.4% vs 1.4%; P = 1.00). High return to sinus rhythm was documented at 6, 12, and 24 months (92%, 91%, and 86%, respectively) as well as sinus rhythm off antiarrhythmic drugs (79%, 84%, and 82%, respectively). Incidence of embolic stroke in patients who underwent Cox-maze procedure was 1.7% (4 out of 232 patients) and 5.1 cases per 1000 person-years. No difference in 4-year cumulative survival between propensity score-matched groups (91.9% vs 86.9%; log rank, 1.67; P = .20), but higher for patients who underwent Cox-maze procedure versus patients with untreated AF (hazard ratio, 2.47; P = .048). Higher additive European System for Cardiac Operative Risk Evaluation (odds ratio, 1.40; P < .001) and limited surgeon experience with Cox-maze procedure (odds ratio, 3.60; P < .001) were significant predictors for failure to perform Cox-maze procedure.ConclusionsIn our center, 76% of patients undergoing mitral valve or mitral valve+tricuspid valve surgery experiencing AF underwent concomitant Cox-maze procedure, which is considerably higher than the national average. No increased morbidity was associated with the Cox-maze procedure with the benefit of very low thromboembolic rate. These results suggest the need for performance-based education for AF surgical ablation to achieve optimal outcomes

    Is There a Twelfth Protein-Coding Gene in the Genome of Influenza A? A Selection-Based Approach to the Detection of Overlapping Genes in Closely Related Sequences

    Get PDF
    Abstract Protein-coding genes often contain long overlapping open-reading frames (ORFs), which may or may not be functional. Current methods that utilize the signature of purifying selection to detect functional overlapping genes are limited to the analysis of sequences from divergent species, thus rendering them inapplicable to genes found only in closely related sequences. Here, we present a method for the detection of selection signatures on overlapping reading frames by using closely related sequences, and apply the method to several known overlapping genes, and to an overlapping ORF on the negative strand of segment 8 of influenza A virus (NEG8), for which the suggestion has been made that it is functional. We find no evidence that NEG8 is under selection, suggesting that the intact reading frame might be non-functional, although we cannot fully exclude the possibility that the method is not sensitive enough to detect the signature of selection acting on this gene. We present the limitations of the method using known overlapping genes and suggest several approaches to improve it in future studies. Finally, we examine alternative explanations for the sequence conservation of NEG8 in the absence of selection. We show that overlap type and genomic context affect the conservation of intact overlapping ORFs and should therefore be considered in any attempt of estimating the signature of selection in overlapping genes

    Is there a twelfth protein-coding gene in the genome of influenza A? A selection-based approach to the detection of overlapping genes in closely related sequences

    Full text link
    Protein-coding genes often contain long overlapping open-reading frames (ORFs), which may or may not be functional. Current methods that utilize the signature of purifying selection to detect functional overlapping genes are limited to the analysis of sequences from divergent species, thus rendering them inapplicable to genes found only in closely related sequences. Here, we present a method for the detection of selection signatures on overlapping reading frames by using closely related sequences, and apply the method to several known overlapping genes, and to an overlapping ORF on the negative strand of segment 8 of influenza A virus (NEG8), for which the suggestion has been made that it is functional. We find no evidence that NEG8 is under selection, suggesting that the intact reading frame might be non-functional, although we cannot fully exclude the possibility that the method is not sensitive enough to detect the signature of selection acting on this gene. We present the limitations of the method using known overlapping genes and suggest several approaches to improve it in future studies. Finally, we examine alternative explanations for the sequence conservation of NEG8 in the absence of selection. We show that overlap type and genomic context affect the conservation of intact overlapping ORFs and should therefore be considered in any attempt of estimating the signature of selection in overlapping gene

    Continuous-time spike-based reinforcement learning for working memory tasks

    Get PDF
    As the brain purportedly employs on-policy reinforcement learning compatible with SARSA learning, and most interesting cognitive tasks require some form of memory while taking place in continuous-time, recent work has developed plausible reinforcement learning schemes that are compatible with these requirements. Lacking is a formulation of both computation and learning in terms of spiking neurons. Such a formulation creates both a closer mapping to biology, and also expresses such learning in terms of asynchronous and sparse neural computation. We present a spiking neural network with memory that learns cognitive tasks in continuous time. Learning is biologically plausibly implemented using the AuGMeNT framework, and we show how separate spiking forward and feedback networks suffice for learning the tasks just as fast the analog CT-AuGMeNT counterpart, while computing efficiently using very few spikes: 1–20 Hz on average

    Physical and Morphological Properties of [O II] Emitting Galaxies in the HETDEX Pilot Survey

    Get PDF
    The Hobby-Eberly Dark Energy Experiment pilot survey identified 284 [O II] 3727 emitting galaxies in a 169 square-arcminute field of sky in the redshift range 0 < z < 0.57. This line flux limited sample provides a bridge between studies in the local universe and higher-redshift [O II] surveys. We present an analysis of the star formation rates (SFRs) of these galaxies as a function of stellar mass as determined via spectral energy distribution fitting. The [O II] emitters fall on the "main sequence" of star-forming galaxies with SFR decreasing at lower masses and redshifts. However, the slope of our relation is flatter than that found for most other samples, a result of the metallicity dependence of the [O II] star formation rate indicator. The mass specific SFR is higher for lower mass objects, supporting the idea that massive galaxies formed more quickly and efficiently than their lower mass counterparts. This is confirmed by the fact that the equivalent widths of the [O II] emission lines trend smaller with larger stellar mass. Examination of the morphologies of the [O II] emitters reveals that their star formation is not a result of mergers, and the galaxies' half-light radii do not indicate evolution of physical sizes.Comment: 36 pages, 16 figures, 4 tables, accepted to Ap

    Metrical service systems with transformations

    Get PDF
    We consider a generalization of the fundamental online metrical service systems (MSS) problem where the feasible region can be transformed between requests. In this problem, which we call T-MSS, an algorithm maintains a point in a metric space and has to serve a sequence of requests. Each request is a map (transformation) ft : At → Bt between subsets At and Bt of the metric space. To serve it, the algorithm has to go to a point at ∈ At, paying the distance from its previous position. Then, the transformation is applied, modifying the algorithm’s state to ft(at). Such transformations can model, e.g., changes to the environment that are outside of an algorithm’s control, and we therefore do not charge any additional cost to the algorithm when the transformation is applied. The transformations also allow to model requests occurring in the k-taxi problem. We show that for α-Lipschitz transformations, the competitive ratio is Θ(α)n-2 on n-point metrics. Here, the upper bound is achieved by a deterministic algorithm and the lower bound holds even for randomized algorithms. For the k-taxi problem, we prove a competitive ratio of Õ((nlog k)2). For chasing convex bodies, we show that even with contracting transformations no competitive algorithm exists. The problem T-MSS has a striking connection to the following deep mathematical question: Given a finite metric space M, what is the required cardinality of an extension M ⊇ M where each partial isometry on M extends to an automorphism? We give partial answers for special cases
    • …
    corecore