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Abstract Protein-coding genes often contain long over-

lapping open-reading frames (ORFs), which may or may

not be functional. Current methods that utilize the signature

of purifying selection to detect functional overlapping

genes are limited to the analysis of sequences from diver-

gent species, thus rendering them inapplicable to genes

found only in closely related sequences. Here, we present a

method for the detection of selection signatures on over-

lapping reading frames by using closely related sequences,

and apply the method to several known overlapping genes,

and to an overlapping ORF on the negative strand of seg-

ment 8 of influenza A virus (NEG8), for which the sug-

gestion has been made that it is functional. We find no

evidence that NEG8 is under selection, suggesting that the

intact reading frame might be non-functional, although we

cannot fully exclude the possibility that the method is not

sensitive enough to detect the signature of selection acting

on this gene. We present the limitations of the method

using known overlapping genes and suggest several

approaches to improve it in future studies. Finally, we

examine alternative explanations for the sequence conser-

vation of NEG8 in the absence of selection. We show that

overlap type and genomic context affect the conservation

of intact overlapping ORFs and should therefore be con-

sidered in any attempt of estimating the signature of

selection in overlapping genes.

Keywords Overlapping genes � Influenza A � Gene

discovery

Background

Discovering a new gene in a clinically important virus is an

exciting proposition, because gene number is usually very

small and each additional gene greatly increases the pro-

teome repertoire and, hence, the list of potential targets for

pharmaceutical intervention. For example, the eleventh

protein-coding gene in the influenza A genome, PB1-F2

(which overlaps PB1), was discovered 20 years after the

initial annotation of its genome, thereby increasing the

proteome repertoire by 10% (Chen et al. 2001). Recently, it

was suggested that the negative strand of segment 8 in

influenza A codes for an additional protein (Clifford et al.

2009; Zhirnov et al. 2007). This open-reading frame (ORF)

(Fig. 1), which was noted when this segment was first

sequenced (Baez et al. 1980), is intact in several human

influenza A viruses, but disrupted in non-human influenza

A viruses, such as avian viruses, as well as in influenza B
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and C viruses. Two main indications that this hypothetical

gene, called NEG8, may be functional were given: (1) The

ORF has been conserved in human influenza A viruses for

almost a century (Clifford et al. 2009; Zhirnov et al. 2007)

and (2) an epitope (a short peptide) encoded by this ORF

was reported to induce an immune system response through

cytotoxic T cells isolated from mice infected with this virus

(Clifford et al. 2009; Zhong et al. 2003).

We note, however, that it is fairly common for at least

one of the five possible overlapping reading frames of any

gene to contain an ORF of a length that may be suitable to

encode a protein, but it is extremely difficult to ascertain

whether such an intact overlapping ORF is functional or

not. Methods for prediction of protein-coding genes search

for (1) the presence of an intact ORF, (2) evidence of

mRNA expression, and (3) evolutionary conservation. In

the case of overlapping genes, however, these properties

are often uninformative because: (1) intact overlapping

ORFs that are nonetheless non-functional are expected to

be fairly common, (2) both same-strand and opposite-

strand overlapping ORFs may be transcribed regardless of

functionality (Lavorgna et al. 2004), and (3) non-functional

overlapping ORFs are evolutionary conserved because of

their sharing a sequence with functional genes. In addition,

viral overlapping genes could originate de novo (Keese and

Gibbs 1992), in which case a lack of conservation is

expected in a recent origin of the gene. The situation in the

literature is quite confused; on the one hand, many over-

lapping ORFs have been deemed upon reexamination as

functional (Chung et al. 2008; Firth 2008; Firth and Atkins

2008a; b, 2009; Sabath et al. 2009), and on the other, the

functionality of numerous annotated overlapping genes

have been questioned (Palleja et al. 2008; Sabath and Graur

2010; Silke 1997; Williams et al. 2009).

Ultimately, whether an ORF is functional or not could

only be determined experimentally. However, the rapid

accumulation of sequence data calls for improvement of

computational methods for prediction of functional over-

lapping genes. The commonest way to computationally

predict functional overlapping genes is to identify

purifying selection, which is tightly associated with func-

tionality. However, the identification of selection signature

in overlapping genes is complicated by the sequence

interdependence between two overlapping coding regions

(Miyata and Yasunaga 1978; Smith and Waterman 1981),

which vary among overlap types (Krakauer 2000). Several

attempts at estimating selection intensity in overlapping

genes reported inordinate degrees of positive selection

(e.g., Campitelli et al. 2006; Hughes et al. 2001; Li et al.

2004; Obenauer et al. 2006). In some studies, one gene was

found to exhibit positive selection while the overlapping

gene showed signs of strong purifying selection (e.g.,

Campitelli et al. 2006; Hughes et al. 2001; Li et al. 2004;

Obenauer et al. 2006). Inferences of positive selection in

overlapping genes have been questioned (Holmes et al.

2006; Pavesi 2007; Sabath et al. 2008b; Suzuki 2006),

mostly because ignoring overlap constraints might bias

selection estimates. Rogozin et al. (2002) tried to overcome

this problem by focusing on sites in which all changes are

synonymous in one gene and nonsynonymous in the

overlapping gene. This method, however, is only practical

when dealing with one type of overlap.

A model for the nucleotide substitutions in overlapping

genes was introduced by Hein and Stovlbaek (1995), who

followed approximate models for non-overlapping genes

that classify sites according to degeneracy classes (Li et al.

1985; Nei and Gojobori 1986; Pamilo and Bianchi 1993).

This model was later incorporated into a method for

annotation of viral genomes (de Groot et al. 2007;

McCauley et al. 2007; McCauley and Hein 2006), and

recently used for estimating selection on overlapping genes

(de Groot et al. 2008). Pedersen and Jensen (2001) sug-

gested a non-stationary substitution model for overlapping

reading frames that extended the codon-based model of

Goldman and Yang (1994). This model encompasses the

evolutionary process more accurately than the approximate

model (Hein and Stovlbaek 1995) by accounting for posi-

tion dependency of each site in an overlap region (Pedersen

and Jensen 2001). However, this improvement disallowed

the straightforward estimation of parameters and forced the

authors to apply a computationally expensive simulation

procedure (Pedersen and Jensen 2001). Firth and Brown

(2005) proposed a method, suitable for sequence pairs, that

calculates several statistics for each particular pairwise

sequence alignment and uses a Monte Carlo simulation to

determine whether the sequence is single-coding or double-

coding. This method led to the discovery of novel over-

lapping genes in many viral taxa (Chung et al. 2008; Firth

2008; Firth and Atkins 2008a, b, 2009). Sabath et al.

(2008b) devised a new method within a maximum-likeli-

hood framework to fit a non-stationary Markov model of

codon substitution to data from two aligned orthologous

overlapping sequences. By using this method, Sabath et al.

Fig. 1 Schematic representation of segment 8 in human influenza A

viruses. The location of the hypothetical gene, NEG8, is shown in red.

The NS1–NEG8 overlap is marked in yellow. The NS1–NEG8–NEP
triple overlap is marked in green. The short NEG8–NEP overlap is

marked in blue (Color figure online)
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(2009) have predicted the existence of a new overlapping

gene in the genomes of four viruses, including the Israeli

acute paralysis virus, which is implicated in the colony-

collapse disorder of honeybees. This prediction was later

supported by Firth et al. (2009). A comparison between the

methods of Firth and Brown and Sabath et al. (Sabath and

Graur 2010) showed differences in performances across

overlap types with Sabath et al.’s method exhibiting higher

sensitivity on average. Other methods for detecting over-

lapping genes, which do not use selection as a criterion,

have been proposed in the literature (Chung et al. 2007;

Nekrutenko and He 2006; Nekrutenko et al. 2005; Neuhaus

et al. 2010; Ribrioux et al. 2008; Szklarczyk et al. 2007;

Trifonov and Rabadan 2009; Xu et al. 2010). These meth-

ods vary widely in their logic, efficacy, and applicability.

Unfortunately, all of the above methods are unsuitable

for dealing with sequences exhibiting high levels of simi-

larity (e.g., Firth and Brown 2005, Fig. 5; Sabath et al.

2008b, Fig. 4), such as data from influenza subtypes (Bao

et al. 2008). Further, these two methods were designed to

detect the signature of selection on pairs of sequences

without accounting for the phylogenetic relationships

among multiple sequences. Firth and Brown (2006) have

attempted to overcome this issue by only using neighboring

terminal pairs of taxa. Although, this approach enables a

uniform sampling of the tree branches, it also has the

downside of including highly similar pairs of sequences,

which (as noted above) yield inaccurate inferences.

Here, we propose a new method for the detection of

purifying selection on hypothetical overlapping reading

frames. The method infers evolutionary changes along a

phylogenetic tree of closely related sequences using

maximum-parsimony criteria. Two studies have used a

similar approach to detect site-specific positive selection

in non-overlapping genes. Fitch et al. (1997) constructed

a maximum-parsimony tree of the HA1 gene of influenza

A, inferred all changes along the branches, and tested if

the changes are randomly distributed among the posi-

tions of the sequence. Similarly, Suzuki and Gojobori

(1999) used the neighbor-joining method (Saitou and Nei

1987) to reconstruct a phylogenetic tree and adapted the

pairwise method of Nei and Gojobori (1986) to estimate

positive selection on a single site in human leukocyte

antigen gene, HIV-1 ENV gene, and the influenza A

HA1 gene. The results of both studies show that even a

weak signature of selection, as in the case of site-spe-

cific positive selection, could be detected in closely

related sequences. Our method makes use of purifying

selection, which unlike positive selection, is known to

affect the vast majority of sites in protein-coding genes

and can, therefore, be used to detect functional over-

lapping genes.

Materials and Methods

Rationale

To detect the signature of purifying selection acting on

a hypothetical gene, we employed the principle that

nonsynonymous mutations are generally more deleterious

than synonymous mutations. If a hypothetical gene is under

purifying selection, a mutation that is nonsynonymous in

both genes is expected to be more deleterious than one that

is nonsynonymous in one gene and synonymous in the

other.

Algorithm

Substitutions are classified into transitions and transver-

sions. Substitutions in the known gene (k) that overlaps a

hypothetical gene (h) are further classified into four cate-

gories: nonsynonymous in both genes (NkNh), nonsynony-

mous in the known gene and synonymous in the

hypothetical gene (NkSh), synonymous in the known gene

and nonsynonymous in the hypothetical gene (SkNh), and

synonymous in both genes (SkSh). Taken together, we

define eight categories of substitutions for each pair of

overlapping sequences (Table 1).

Throughout this article, we use the term ‘‘category pair’’

to denote a pair of substitutional categories that differ only

in the hypothetical gene (i.e., NkNh vs. NkSh, and SkNh vs.

SkSh). The four category pairs are set apart in bold cells in

Table 1. For example, being nonsynonymous versus syn-

onymous in the hypothetical gene is the only difference

between a transitional mutation in the NkNh category versus

a transitional mutation in the NkSh category. In the absence

of selection on the hypothetical gene, the rates of the two

substitutional categories within a pair should be equal to

each other. If, on the other hand, the hypothetical gene is

functional and under purifying selection, the rate of

Table 1 Notation of the test variables and specification of category

pairs

Categories

NkNh NkSh SkNh SkSh

Transitions

Possible substitutions P1 P2 P3 P4

Observed substitutions O1 O2 O3 O4

Expected E1 E2 E3 E4

Transversions

Possible substitutions P5 P6 P7 P8

Observed substitutions O5 O6 O7 O8

Expected E5 E6 E7 E8
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substitution in the NkNh category should be lower than that

in NkSh, because a nonsynonymous change in both the

known and the hypothetical genes will affect two gene

products rather than one. Similarly, the rate of change in

the SkNh category should be lower than that in SkSh.

For example, Fig. 2 illustrates three possible substitu-

tions at site 4 in a phase-2 opposite-strand overlapping

sequence. If the hypothetical gene is under selection, the

change A/T ? C/G (SkNh category) is expected to be more

deleterious than the change A/T ? T/A (SkSh category),

which does not affect the amino acid sequence of the

hypothetical gene. We note that there is no assumption

about the intensity of selection on the known gene and,

hence, the method can be used even when the known gene is

in fact under no selection (evolving under strict neutrality).

Given a multiple alignment of closely related DNA

sequences, the method includes four steps:

(1) Construction of an unrooted phylogenetic tree.

(2) Reconstruction of ancestral sequences.

(3) Classification of the changes along the tree into the

eight substitutional categories.

(4) Testing for the signature of purifying selection

through comparisons between category pairs that

differ in the hypothetical gene only.

We used PAUP (Swofford 2003) to construct an un-

rooted neighbor-joining tree (Saitou and Nei 1987) of each

data set and assigned the ancestral character states of the

internal nodes using the parsimony criteria (Fitch 1971).

Using the reconstructed sequences, we counted the number

of unique observed substitutions (O) in each category along

all the branches. We used the unique number of substitu-

tions rather than the total number of substitutions to min-

imize the possible biases from non-uniform sampling (e.g.,

in industrial countries where more isolates are collected)

and from highly constrained variable sites, in which only a

few character states are permissible (Delport et al. 2008).

For any given sequence of length n, there are 3n possible

substitutions (e.g., Fig. 2) that can be classified into these

eight categories (Table 1). For any given set, we calculated

the number of possible substitutions (P) in each category as

the average across the sequences in all nodes of the tree.

We use the ratio Oi/Pi as a measure of the rate of sub-

stitutions in category i. If the hypothetical gene is not under

selection, we expect no difference between Oi/Pi and Oj/Pj

where i and j are two categories that differ only in the

hypothetical gene: hi, ji e {h1, 2i, h3, 4i, h5, 6i, h7, 8i}.

The null hypothesis of no selection on the hypothetical

gene is defined as:

Oi

Pi
¼ Oj

Pj
¼

Oi þ Oj

� �

Pi þ Pj

� � : ð1Þ

Under this null hypothesis, we estimate the expected

values of Oi and Oj to be:

Ei ¼ Pi

Oi þ Oj

� �

Pi þ Pj

� � and Ej ¼ Pj

Oi þ Oj

� �

Pi þ Pj

� � : ð2Þ

We, then, construct a contingency table for each

category pair

Oi Oj

Ei Ej

� �
; i; jh i 2 1; 2h i; 3; 4h i; 5; 6h i; 7; 8h if g: ð3Þ

This contingency table is used to test the null

hypothesis. For example, O1 and O2, which are the

observed number of substitutions in the transitional NkNh

and NkSh categories (Table 1), differ only by being

nonsynonymous or synonymous in the hypothetical gene.

E1 and E2, which are the expected values of O1 and O2, are

estimated based on the null hypothesis in which the rate of

substitutions in the two categories is equal. If the

hypothetical gene is subjected to selection, any change in

the NkNh category would affect both genes and O1 is

expected to be lower than E1, whereas O2 is expected to be

higher than E2.

We used the one-tailed Fisher’s exact test (1925) to

determine significance of the negative association, in which

the observations tend to lie in the lower left and upper right

of the table. For example, in the contingency table

O1 O2

E1 E2

� �
; the alternative, in which category 1 is under

stronger purifying selection, requires that O1 is lower than

E1, and that O2 is higher than E2. Because, the test requires

exact numbers, the expected values were rounded. Finally,

Fig. 2 Three possible

substitutions at site 4 (in bold)

in the phase-2 opposite-strand

overlapping sequence between a

known gene and a hypothetical

gene. Transitions and

transversions are marked in red
and blue, respectively. The

substitutional category of each

change is noted (Color figure

online)
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we combined the four P values into a single test statistic

using Fisher’s method (1925).

In the case of overlap types other than phase-2 opposite-

strand overlap (the overlap type of NEG8), the number of

possible SkSh substitutions is very small (Table 2). This

makes the SkSh categories, and consequently the NkSh–SkSh

pair, uninformative. Therefore, we focused on the two cat-

egory pairs of NkNh and NkSh (bolded in Table 1) in the test.

Sequence Data

There are several viruses, which have been extensively

sequenced and are, hence, suitable for analysis by our

method. We compiled sequences of (1) the most sequenced

subtypes of influenza A (H3N2, H1N1, and H5N1), (2)

influenza B, (3) human immunodeficiency virus 1 (HIV-1),

(4) human papillomavirus type 16 (HPV-16), and (5)

hepatitis B virus (HBV). The data consists of three dif-

ferent kinds of sets: (1) NS1–NEG8 overlaps in influenza

A, H3N2 and H1N1 subtypes, in which the NEG8 ORF is

intact, (2) NS1–NEG8 overlaps in influenza A, H5N1

subtype and influenza B, in which the NEG8 ORF is dis-

rupted, and (3) seven known same-strand overlapping

genes: PB1–PB1-F2 overlaps from influenza A, H3N2

subtype; PB1–PB1-F2 overlaps and NS1–NEP overlaps

from influenza A, H5N1 subtype; NA-NB overlaps from

influenza B; ENV-REV overlaps from HIV-1; E2–E4

overlaps from HPV-16; and large-S-polymerase(large-S-

POL) overlaps from HBV. The four NS1–NEG8 sets are

listed in Table 3. The seven sets of same-strand overlap-

ping genes are listed in Table 4.

For each set of sequences of overlapping genes from

influenza viruses, we obtained multiple alignments of all

full-length sequences excluding sequences with insertions

and/or deletions from the NCBI Influenza Virus Resource

(Bao et al. 2008). Because, ancestral sequence recon-

struction is inaccurate for divergent sequences (Zhang and

Nei 1997), we also excluded sequences from early isolates

(before 1990) that result in very long braches on the tree.

For the NEG8 sets, we only analyzed the region of NEG8

that overlaps with NS1 (382 bases), and excluded regions

of triple overlap (NS1–NEG8–NEP) and the short region of

NEP–NEG8 overlap (Fig. 1). The nucleotide sequences of

ENV–REV overlap from HIV-1, E2–E4 overlap from HPV-

16, and large-S-polymerase (POL) overlap from HBV,

were obtained from the complete genomes of these viruses

(Accessions NC_001802, NC_001526, and NC_003977,

respectively). For each of the above three genes, we used

nucleotide Blast (Altschul et al. 1990) to find all full-length

sequences excluding sequences with insertions and/or

deletions. For all data sets, the frequencies of the possible

and observed numbers of substitutions in each category are

listed in Table 2.

To gather a better understanding of the new method and

the data, we used our previous method (SLG; Sabath et al.

2008b), which is applicable to pairs of sequences. For each

data set, we chose 100 random sequence pairs with 5%

divergence or higher (when available). For each pair, we

applied the method twice: first, to estimate the intensity of

selection on both genes simultaneously (Sabath et al.

2008b), and second, using the likelihood ratio test for two

hierarchical models (Sabath et al. 2009). In model 1, we

assume no selection on the overlapping gene. In model 2,

the overlapping gene is assumed to be under selection. If

model 2 fits the data significantly better than model 1

(P \ 0.01), then the overlapping gene is predicted to be

under selection and is most probably functional.

We note, however, that the methods are not fully com-

parable for four reasons: (1) SLG is not suitable for short

evolutionary distances and therefore we excluded sequence

pairs whose divergence from each other is \5%. (2)

Because, SLG is only applicable for pairs of sequences,

and the current data sets contain a huge number of pairs

(e.g., the HBV set contains more than 700,000 pairs), we

had to restrict the computation to only a small fraction of

the data (100 pairs). (3) The randomly chosen pairs cannot

be treated as independent data points because of their

evolutionary relationships; hence, there is no simple solu-

tion for multiple-testing correction. (4) The choice of pairs

leads to internal branches on the tree to be over-represented

in the analysis.

Finally, we used the complete genomes of 768 RNA

non-ambisense viruses (i.e., viruses that utilize only one

strand to code for proteins) to evaluate the influence of

genome composition on the probability of having an

overlapping ORF. Genomes were obtained from NCBI.

Stop codon frequencies in the five possible reading frames

[on the same strand in phases 1 and 2, and on the opposite

strand in phases 0, 1, and 2] were calculated from the

coding sequences of each genome.

The source code (written in Matlab) and the data files

used in this study can be accessed at http://overlappinggene.

sourceforge.net.

Results

Our data consist of three sets: (1) NS1 genes with disrupted

NEG8 ORFs, (2) NS1 genes with intact NEG8 ORFs, and

(3) known same-strand overlapping genes. Because, our

method is indifferent to the degree of selection acting on

the known gene, we applied it on all sets twice (recipro-

cally) as a control. For example, for the sets in which no

NEG8 ORF exists (H5N1 and influenza B), we tested for

selection on the NS1 genes to examine the method’s ability

to detect true genes and also tested for selection on the

J Mol Evol (2011) 73:305–315 309
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Table 2 Possible and observed number of substitutions in each category

Gene 1 Gene 2 Ts/Tv Nonsynonymous

substitutions in gene 2

Synonymous

substitutions in gene 2

NN NS SN SS

Influenza A: H3N2 NEG8 NS1 Ts P 237.8 16.9 22.9 104.4

O 73 10 16 68

Tv P 554.9 78.6 65.8 64.8

O 30 10 16 7

Influenza A: H1N1 NEG8 NS1 Ts P 237.8 18.0 18.4 107.8

O 53 4 12 61

Tv P 547.1 81.9 70.3 64.7

O 25 4 13 7

Influenza A: H5N1 NEG8 NS1 Ts P 237.2 19.8 17.0 108.1

O 111 12 14 93

Tv P 539.7 84.4 71.0 69.0

O 61 13 13 21

Influenza B NEG8 NS1 Ts P 346.5 32.3 21.3 167.8

O 104 11 12 114

Tv P 829.9 141.1 92.4 72.7

O 66 12 18 10

Influenza A: H3N2 PB1-F2 PB1 Ts P 97.9 83.1 86.0 3.0

O 21 13 76 3

Tv P 377.0 73.0 89.0 1.0

O 16 4 19 1

Influenza A: H5N1 PB1-F2 PB1 Ts P 97.9 83.1 86.0 3.0

O 15 15 81 4

Tv P 382.4 70.5 86.0 1.0

O 20 4 23 1

Influenza A: H5N1 NS1 NEP Ts P 62.6 53.1 55.2 0.1

O 29 25 36 0

Tv P 236.8 57.9 44.2 3.0

O 22 7 9 0

Influenza B NB NA Ts P 92.6 93.3 103.2 2.0

O 29 33 62 1

Tv P 358.0 99.8 121.4 2.9

O 25 7 13 0

HIV-1 ENV REV Ts P 72.2 76.1 72.8 3.9

O 14 29 23 3

Tv P 296.2 65.3 86.5 1.9

O 27 12 12 0

HPV-16 E2 E4 Ts P 87.0 97.0 94.0 4.0

O 3 13 1 1

Tv P 352.8 112.8 97.4 1.1

O 4 5 2 0

HBV Pol Large S Ts P 408.4 378.0 385.8 20.8

O 183 264 220 24

Tv P 1471.1 457.7 442.5 14.6

O 401 204 149 14

Ts transitions; Tv transversions

310 J Mol Evol (2011) 73:305–315
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disrupted NEG8 ORF to find whether the method yields

false positive results. We distinguish between the results

for the NEG8–NS1 sets (Table 3) and those for same-strand

overlaps (Table 4), because in the later case, the type of

overlap dictates using the reduced version of the method

(see ‘‘Materials and Methods’’) and is therefore predicted

to have a lower power. In both tables, P values lower then

0.05 are bolded. For reference, we used SLG, our previ-

ously developed method (Sabath et al. 2008b) to evaluate

the intensity of selection on each gene and the percentage

of pairs, which were predicted to be under purifying

selection out of the total number of pairs (as in Sabath and

Graur 2010; Sabath et al. 2009).

NEG8–NS1 Sets

We found significant signatures of selection in three out of

the four known NS1 genes (the P value of the fourth is

relatively low, 0.086), demonstrating the ability of the

method to detect selection in known functional genes

(Table 3). We used the two sets in which the NEG8 ORF is

disrupted (H5N1 and influenza B) to verify that the method

does not yield false positive inferences. In both cases, no

signature of selection was identified on NEG8. Finally, we

applied the method to test for selection on the hypothetical

NEG8 ORF in the H1N1 and H3N2 sets. We did not find a

significant signature of selection on the NEG8 ORF in

either case.

Known Same-Strand Overlapping Genes

We used seven sets of known overlapping genes in five

viruses to test the performance of the method in same-

strand overlapping genes (Table 4). Because, there are very

few possible substitutions that are synonymous in both

genes (Table 2), the test is applied only to two category

pairs. We find significant signatures of selection on both

genes in the large-S-POL overlap set, demonstrating the

ability of the method to detect selection on same-strand

overlaps. In three sets (PB1–PB1-F2 from H3N2 and

H5N1 subtypes, and NA–NB), we identified significant

signatures of selection on one gene while no selection was

identified on the other. In two sets (ENV–REV and E2–E4),

the P value of one gene is relatively low (0.072 and 0.062,

respectively) while no selection was identified on the other.

For the last set (NS1–NEP), there were no significant sig-

natures of selection detected on any of the two genes.

Comparison to SLG

Although, SLG (Sabath et al. 2008b) is not fully compa-

rable to our present method, it complements the new

method by providing estimates of selection intensity and

the percentage of positive pairs, i.e., pairs that were pre-

dicted to be under purifying selection. Similar to the new

method, SLG did not detect any signature of selection in

the two sets in which the NEG8 ORF is disrupted. There

Table 3 Sets of NEG8–NS1 overlaps

Virus Number of

sequences

Gene 1 P Gene 2 P x1 (STD) x2 (STD) Gene

1% Posa
Gene

2% Posa

Hypothetical

NEG8 gene

Influenza A: H3N2 410 NEG8 0.151 NS1 0.017 NA NA NA NA

Influenza A: H1N1 217 NEG8 0.667 NS1 0.008 0.978 (0.157) 0.305 (0.052) 0 91

No NEG8 gene Influenza A: H5N1 581 NEG8 0.359 NS1 0.086 0.817 (0.184) 0.470 (0.112) 0 18

Influenza B 229 NEG8 0.604 NS1 0.015 0.734 (0.155) 0.487 (0.081) 0 10

a Percentage of positives out of 100 random pairs

Table 4 Sets of known same-strand overlapping genes

Virus Number of

sequences

Gene 1 P Gene 2 P x1 (STD) x2 (STD) Gene 1% Posa Gene 2% Posa

Influenza A: H3N2 999 PB1-F2 0.446 PB1 2.0 3 1027 0.864 (0.120) 0.045 (0.011) 0 100

Influenza A: H5N1 522 PB1-F2 0.690 PB1 5.6 3 10210 0.640 (0.204) 0.024 (0.013) 34 100

Influenza A: H5N1 581 NS1 0.647 NEP 0.151 0.808 (0.250) 0.505 (0.168) 6 33

Influenza B 165 NB 0.617 NA 0.044 0.847 (0.303) 0.394 (0.147) 0 44

HIV-1 323 REV 0.265 ENV 0.072 2.373 (1.295) 1.370 (1.028) 0 1

HPV-16 63 E4 0.606 E2 0.062 NA NA NA NA

HBV 561 Large S 0.008 Pol 1.1 3 1027 1.783 (0.749) 0.422 (0.085) 26 97

a Percentage of positives out of 100 random pairs
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are four cases in which SLG predicted more than 90%

positive pairs, all were also identified by the new method.

In four other cases, there is a moderate signal (26–44%

positive pairs). For two of these cases (NEP and PB1–PB1-

F2 from H5N1 subtype) we did not detect selection by the

new method. In two cases, we found a weak signal (10 and

18%); one was detected by the new method, the other was

not. Finally, in six cases we found 0–6% positive pairs.

Discussion

We present a new method for the detection of functional

overlapping genes utilizing the signature of selection for

closely related sequences. The method detects selection

signatures by extending the principle that nonsynonymous

mutations are generally more deleterious than synonymous

mutations. In overlapping genes, this principle is translated

into the following expectation: a mutation that is nonsyn-

onymous in both genes is expected to be more deleterious

than a mutation that is nonsynonymous in one gene and

synonymous in the other.

The specificity of the method was evaluated by using

influenza viruses in which the NEG8 ORF is disrupted.

Evaluating the sensitivity of the method, in contrast, is a

much more difficult proposition. Ideally, we would have

liked to use known opposite-strand overlapping genes with

phase-2 overlaps as in NEG8. Unfortunately, there is no

sufficient data for all the currently known opposite-strand

overlapping genes (e.g., Todd et al. 2001). We, therefore,

chose to use known same-strand overlapping genes, in

which the sensitivity is expected to be lower because of the

fewer category pairs that can be used. Nevertheless, the

method has detected the signature of selection on both

genes in one set and one gene in three other sets.

Variation in selection pressures among sites may also

affect the method’s performance. For example, a mutation of

the NkSh category at a constrained site of the known protein

may be more deleterious than a mutation of the NkNh cate-

gory at less constrained sites of both genes. As a control for

site variation, we used data sets of orthologous sequences

that share constrained sites, but in which the hypothetical

NEG8 ORF is disrupted. In future studies, it may be bene-

ficial to incorporate information of known constrained sites

into the model. In addition to variation in selection pressures

among sites within one gene, difference in the intensities of

selection acting on the two overlapping genes may also

affect the performance of the method, especially when the

hypothetical gene is under considerable weaker purifying

selection than the known overlapping gene. In an overlap-

ping gene pair, the newer gene is expected to be under

weaker purifying selection (Liang and Landweber 2006),

because it has evolved for a shorter period of time than its

overlapping genes as well as under the constraints of its

overlapping gene. The hypothetical overlapping gene would

usually be the newer gene. Therefore, detection of new

overlapping genes by signature of purifying selection is

difficult. Indeed, PB1-F2, a novel human influenza A gene

(Chen et al. 2001) was not detected by the method (Table 4).

This gene was shown to be under selective pressure that is

weaker by an order of magnitude than that on the older

overlapping gene, PB1 (Sabath et al. 2008b). The lack of

selection signature in the NEG8 ORF may be due to the

intact reading frame being non-functional. However, we

cannot fully exclude the possibility that the method cannot

detect the signature of selection because the gene is too new.

Fig. 3 Frequencies of stop codons of 768 RNA viruses in the five

possible reading frames plotted against genomic GC content. a Stop

codon frequencies on the same strand (SS) in phase 1 (blue) and phase

2 (red). b Stop codon frequencies on the opposite strand (OS) in phase

0 (green), phase 1 (cyan), and phase 2 (magenta). Stop codons

frequencies on the opposite strand in phase 2 (NEG8 phase) of

influenza genomes are marked in black (Color figure online)
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We consider two factors that may contribute to the

conservation of intact overlapping ORFs in the absence of

selection. In a non-functional ORF that overlaps a func-

tional gene, the potential for a stop codon mutation that

disrupts the ORF is determined by the sequence of the

functional gene. Consequently, the frequencies of stop

codons vary among the five overlap types (Fig. 3), leading

to higher number of non-functional overlapping ORFs in

overlap types with low frequency of stop codons (Sabath

et al. 2008a; Silke 1997). Indeed, the specific overlap type

between *90% of the NEG8 ORF and NS1 (phase-2

opposite-strand overlap) was found to have the lowest

frequency of stop codons from among all genes (Fig. 3).

Moreover, influenza genomes have a below-average fre-

quency of stop codons in this phase (Fig. 3b, black dots)

increasing the probability of non-functional ORFs. This

observation joins previous studies, which have also studied

the frequency of stop codons with relation to overlapping

genes (e.g., Nekrutenko et al. 2005; Ribrioux et al. 2008;

Trifonov and Rabadan 2009). Finally, the triple overlap

involving NEG8, NS1, and NEP may increase the conser-

vation of NEG8 because any change in this region is likely

to be nonsynonymous in either NS1 or NEP or both. These

two factors indicate that conservation of an overlapping

ORF is strongly dependent on its genomic context. Hence,

it is important to account for genomic context in any future

attempt to detect overlapping genes.

The method presented here belongs to a group of

approximate methods, in which sites are classified by

degeneracy class. Approximate methods are useful for

analyses of large data sets, but are less accurate than max-

imum-likelihood methods (Yang and Nielsen 2000). Hence,

more powerful methods may be developed within the

maximum-likelihood framework. An additional parameter

that could be incorporated in future methods is the time of

origin of each substitution, which could be estimated by

using the sampling dates as calibration (Drummond and

Rambaut 2007). Deleterious substitutions are expected to be

more prevalent among new substitutions (Pybus et al. 2007)

because they had a lower chance of being eliminated from

the population by selection. Therefore, it would be benefi-

cial to account for the age of each nucleotide substitution

when selection is estimated at the population level. The

comparison of the new method to a previous one (Sabath

et al. 2008b) revealed little difference in performance.

Finally, the inability of the method to detect several known

overlapping genes requires careful interpretation of nega-

tive results. However, since none of the existing methods in

the literature is applicable to this type of data, we believe

that our method constitutes an important contribution and

would be helpful for any future study aimed at detecting

selection signatures in overlapping genes.
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