306 research outputs found

    Fractional charge excitations in fermionic ladders

    Full text link
    The system of interacting spinless fermions hopping on a two-leg ladder in the presence of an external magnetic field is shown to possess a long range order: the bond density wave or the staggered flux phase. In both cases the elementary excitations are Z2Z_2 kinks and carry one half the charge of an electron.Comment: 4 pages, 3 figure

    Lower Bound for the Fermi Level Density of States of a Disordered D-Wave Superconductor in Two Dimensions

    Full text link
    We consider a disordered d--wave superconductor in two dimensions. Recently, we have shown in an exact calculation that for a lattice model with a Lorentzian distributed random chemical potential the quasiparticle density of states at the Fermi level is nonzero. As the exact result holds only for the special choice of the Lorentzian, we employ different methods to show that for a large class of distributions, including the Gaussian distribution, one can establish a nonzero lower bound for the Fermi level density of states. The fact that the tails of the distributions are unimportant in deriving the lower bound shows that the exact result obtained before is generic.Comment: 15 preprint pages, no figures, submitted to PR

    Explicit approximate controllability of the Schr\"odinger equation with a polarizability term

    Full text link
    We consider a controlled Schr\"odinger equation with a dipolar and a polarizability term, used when the dipolar approximation is not valid. The control is the amplitude of the external electric field, it acts non linearly on the state. We extend in this infinite dimensional framework previous techniques used by Coron, Grigoriu, Lefter and Turinici for stabilization in finite dimension. We consider a highly oscillating control and prove the semi-global weak H2H^2 stabilization of the averaged system using a Lyapunov function introduced by Nersesyan. Then it is proved that the solutions of the Schr\"odinger equation and of the averaged equation stay close on every finite time horizon provided that the control is oscillating enough. Combining these two results, we get approximate controllability to the ground state for the polarizability system

    Incommensurate spin correlations in Heisenberg spin-1/2 zig-zag ladders

    Full text link
    We develop a low-energy effective theory for spin-1/2 frustrated two-leg Heisenberg spin ladders. We obtain a new type of interchain coupling that breaks parity symmetry. In the presence of an XXZ-type anisotropy, this interaction gives rise to a novel ground state, characterized by incommensurate correlations. In the case of a single ladder, this state corresponds to a spin nematic phase. For a frustrated quasi-one-dimensional system of infinitely many weakly coupled chains, this state develops true three dimensional spiral order. We apply our theory to recent neutron scattering experiments on Cs2CuCl4Cs_2CuCl_4.Comment: 4 pages of revtex, 3 figure

    New Chiral Universality Class in a Frustrated Three-Leg Spin Ladder

    Full text link
    We study a model of three S=1/2S=1/2 antiferromagnetic Heisenberg spin chains weakly coupled by on-rung and plaquette-diagonal interchain interactions. It is shown that the model exhibits a critical phase with central charge C=2 and belongs to the class of ``chirally stabilized'' liquids recently introduced by Andrei, Douglas, and Jerez. By allowing anisotropic interactions in spin space, we find an exact solution at a Toulouse point which captures all universal properties of the model, including the SU(2) symmetric case. At the new critical point the massless degrees of freedom are described in terms of an effective S=1/2S = 1/2 Heisenberg spin chain and two critical Ising models. We discuss the spectral properties of the model, compute spin-spin correlation functions and estimate the NMR relaxation rate.Comment: 4 page

    Van Hove Singularities in disordered multichannel quantum wires and nanotubes

    Full text link
    We present a theory for the van Hove singularity (VHS) in the tunneling density of states (TDOS) of disordered multichannel quantum wires, in particular multi-wall carbon nanotubes. We assume close-by gates which screen off electron-electron interactions. Diagrammatic perturbation theory within a non-crossing approximation yields analytical expressions governing the disorder-induced broadening and shift of VHS's as new subbands are opened. This problem is nontrivial because the (lowest-order) Born approximation breaks down close to the VHS. Interestingly, compared to the bulk case, the boundary TDOS shows drastically altered VHS, even in the clean limit.Comment: 4 pages, 2 figures, accepted with revisions in PR

    Quasiparticle density of states in dirty high-T_c superconductors

    Full text link
    We study the density of quasiparticle states of dirty d-wave superconductors. We show the existence of singular corrections to the density of states due to quantum interference effects. We then argue that the density of states actually vanishes in the localized phase as ∣E∣|E| or E2E^2 depending on whether time reversal is a good symmetry or not. We verify this result for systems without time reversal symmetry in one dimension using supersymmetry techniques. This simple, instructive calculation also provides the exact universal scaling function for the density of states for the crossover from ballistic to localized behaviour in one dimension. Above two dimensions, we argue that in contrast to the conventional Anderson localization transition, the density of states has critical singularities which we calculate in a 2+ϵ2+\epsilon expansion. We discuss consequences of our results for various experiments on dirty high-TcT_c materials

    Staggered Flux Phase in a Model of Strongly Correlated Electrons

    Get PDF
    We present numerical evidence for the existence of a staggered flux (SF) phase in the half-filled two-leg t-U-V-J ladder, with true long-range order in the counter-circulating currents. The density-matrix renormalization-group (DMRG) / finite-size scaling approach, generalized to describe complex-valued Hamiltonians and wavefunctions, is employed. The SF phase exhibits robust currents at intermediate values of the interaction strength.Comment: Version to appear in Phys. Rev. Let

    Phase Diagram of the Half-Filled Extended Hubbard Model in Two Dimensions

    Full text link
    We consider an extended Hubbard model of interacting fermions on a lattice. The fermion kinetic energy corresponds to a tight binding Hamiltonian with nearest neighbour (-t) and next nearest neighbour (t') hopping matrix elements. In addition to the onsite Hubbard interaction (U) we also consider a nearest neighbour repulsion (V). We obtain the zero temperature phase diagram of our model within the Hartree-Fock approximation. We consider ground states having charge and spin density wave ordering as well as states with orbital antiferromagnetism or spin nematic order. The latter two states correspond to particle-hole binding with dx2−y2d_{x^2-y^2} symmetry in the charge and spin channels respectively. For t′=0t' = 0, only the charge density wave and spin density wave states are energetically stable. For non-zero t', we find that orbital antiferromagnetism (or spin nematic) order is stable over a finite portion of the phase diagram at weak coupling. This region of stability is seen to grow with increasing values of t'.Comment: Latex file, 10 output pages, 3 Figures (available on request to [email protected]), to appear in Phys. Rev. B (BR

    Dynamical Chiral Symmetry Breaking in Unquenched QED3{QED}_3

    Full text link
    We investigate dynamical chiral symmetry breaking in unquenched QED3{QED}_3 using the coupled set of Dyson--Schwinger equations for the fermion and photon propagators. For the fermion-photon interaction we employ an ansatz which satisfies its Ward--Green--Takahashi identity. We present self-consistent analytical solutions in the infrared as well as numerical results for all momenta. In Landau gauge, we find a phase transition at a critical number of flavours of Nfcrit≈4N_f^{\mathrm crit} \approx 4. In the chirally symmetric phase the infrared behaviour of the propagators is described by power laws with interrelated exponents. For Nf=1N_f=1 and Nf=2N_f=2 we find small values for the chiral condensate in accordance with bounds from recent lattice calculations. We investigate the Dyson--Schwinger equations in other linear covariant gauges as well. A comparison of their solutions to the accordingly transformed Landau gauge solutions shows that the quenched solutions are approximately gauge covariant, but reveals a significant amount of violation of gauge covariance for the unquenched solutions.Comment: 33 pages, 8 figures, reference added, version to be published in Phys. Rev.
    • …
    corecore