22 research outputs found

    Circadian tumor infiltration and function of CD8+ T cells dictate immunotherapy efficacy.

    Get PDF
    The quality and quantity of tumor-infiltrating lymphocytes, particularly CD8 <sup>+</sup> T cells, are important parameters for the control of tumor growth and response to immunotherapy. Here, we show in murine and human cancers that these parameters exhibit circadian oscillations, driven by both the endogenous circadian clock of leukocytes and rhythmic leukocyte infiltration, which depends on the circadian clock of endothelial cells in the tumor microenvironment. To harness these rhythms therapeutically, we demonstrate that efficacy of chimeric antigen receptor T cell therapy and immune checkpoint blockade can be improved by adjusting the time of treatment during the day. Furthermore, time-of-day-dependent T cell signatures in murine tumor models predict overall survival in patients with melanoma and correlate with response to anti-PD-1 therapy. Our data demonstrate the functional significance of circadian dynamics in the tumor microenvironment and suggest the importance of leveraging these features for improving future clinical trial design and patient care

    Yellowfin tuna behavioural ecology and catchability in the South Atlantic: The right place at the right time (and depth).

    Get PDF
    The yellowfin tuna (Thunnus albacares: YFT) is a widely distributed, migratory species that supports valuable commercial fisheries. Landings of YFT are seasonally and spatially variable, reflecting changes in their availability and accessibility to different fleets and metiers which, in turn, has implications for sustainable management. Understanding the dynamics of YFT behaviour and how it is affected by biological and ecological factors is therefore of consequence to fisheries management design. Archival and pop-up satellite tags (PSAT) were used in the South Atlantic Ocean around St Helena between 2015 and 2020 to collect information on the movements, foraging and locomotory behaviour of YFT. The study aimed to (1) identify vertical behaviour of YFT within St Helena's EEZ; (2) assess the timing and depth of potential feeding events and (3) to use the information to inform on the catchability of YFT to the local pole and line fishing fleet. Results indicate that the YFT daytime behaviour shifted between shallow with high incidence of fast starts in surface waters in summer months (December to April), to deep with high incidence of strikes at depth in colder months (May to November). Catchability of YFT was significantly reduced between May and November as YFT spent more time at depths below 100 m during the day, which coincides with a reduction in the quantity of YFT caught by the inshore fleet

    Concise polygenic models for cancer-specific identification of drug-sensitive tumors from their multi-omics profiles.

    Get PDF
    In silico models to predict which tumors will respond to a given drug are necessary for Precision Oncology. However, predictive models are only available for a handful of cases (each case being a given drug acting on tumors of a specific cancer type). A way to generate predictive models for the remaining cases is with suitable machine learning algorithms that are yet to be applied to existing in vitro pharmacogenomics datasets. Here, we apply XGBoost integrated with a stringent feature selection approach, which is an algorithm that is advantageous for these high-dimensional problems. Thus, we identified and validated 118 predictive models for 62 drugs across five cancer types by exploiting four molecular profiles (sequence mutations, copy-number alterations, gene expression, and DNA methylation). Predictive models were found in each cancer type and with every molecular profile. On average, no omics profile or cancer type obtained models with higher predictive accuracy than the rest. However, within a given cancer type, some molecular profiles were overrepresented among predictive models. For instance, CNA profiles were predictive in breast invasive carcinoma (BRCA) cell lines, but not in small cell lung cancer (SCLC) cell lines where gene expression (GEX) and DNA methylation profiles were the most predictive. Lastly, we identified the best XGBoost model per cancer type and analyzed their selected features. For each model, some of the genes in the selected list had already been found to be individually linked to the response to that drug, providing additional evidence of the usefulness of these models and the merits of the feature selection scheme

    Adaptive-Miner: an efficient distributed association rule mining algorithm on Spark

    No full text

    Practical approaches for mining frequent patterns in molecular datasets

    Get PDF
    Pattern detection is an inherent task in the analysis and interpretation of complex and continuously accumulating biological data. Numerous itemset mining algorithms have been developed in the last decade to efficiently detect specific pattern classes in data. Although many of these have proven their value for addressing bioinformatics problems, several factors still slow down promising algorithms from gaining popularity in the life science community. Many of these issues stem from the low user-friendliness of these tools and the complexity of their output, which is often large, static, and consequently hard to interpret. Here, we apply three software implementations on common bioinformatics problems and illustrate some of the advantages and disadvantages of each, as well as inherent pitfalls of biological data mining. Frequent itemset mining exists in many different flavors, and users should decide their software choice based on their research question, programming proficiency, and added value of extra feature

    The Interface of Tumour-Associated Macrophages with Dying Cancer Cells in Immuno-Oncology

    No full text
    Tumour-associated macrophages (TAMs) are essential players in the tumour microenvironment (TME) and modulate various pro-tumorigenic functions such as immunosuppression, angiogenesis, cancer cell proliferation, invasion and metastasis, along with resistance to anti-cancer therapies. TAMs also mediate important anti-tumour functions and can clear dying cancer cells via efferocytosis. Thus, not surprisingly, TAMs exhibit heterogeneous activities and functional plasticity depending on the type and context of cancer cell death that they are faced with. This ultimately governs both the pro-tumorigenic and anti-tumorigenic activity of TAMs, making the interface between TAMs and dying cancer cells very important for modulating cancer growth and the efficacy of chemo-radiotherapy or immunotherapy. In this review, we discuss the interface of TAMs with cancer cell death from the perspectives of cell death pathways, TME-driven variations, TAM heterogeneity and cell-death-inducing anti-cancer therapies. We believe that a better understanding of how dying cancer cells influence TAMs can lead to improved combinatorial anti-cancer therapies, especially in combination with TAM-targeting immunotherapies

    Trial watch: Dendritic cell (DC)-based immunotherapy for cancer

    Get PDF
    Dendritic cell (DC)-based vaccination for cancer treatment has seen considerable development over recent decades. However, this field is currently in a state of flux toward niche-applications, owing to recent paradigm-shifts in immuno-oncology mobilized by T cell-targeting immunotherapies. DC vaccines are typically generated using autologous (patient-derived) DCs exposed to tumor-associated or -specific antigens (TAAs or TSAs), in the presence of immunostimulatory molecules to induce DC maturation, followed by reinfusion into patients. Accordingly, DC vaccines can induce TAA/TSA-specific CD8(+)/CD4(+) T cell responses. Yet, DC vaccination still shows suboptimal anti-tumor efficacy in the clinic. Extensive efforts are ongoing to improve the immunogenicity and efficacy of DC vaccines, often by employing combinatorial chemo-immunotherapy regimens. In this Trial Watch, we summarize the recent preclinical and clinical developments in this field and discuss the ongoing trends and future perspectives of DC-based immunotherapy for oncological indications

    Trial watch: Dendritic cell (DC)-based immunotherapy for cancer

    No full text
    Dendritic cell (DC)-based vaccination for cancer treatment has seen considerable development over recent decades. However, this field is currently in a state of flux toward niche-applications, owing to recent paradigm-shifts in immuno-oncology mobilized by T cell-targeting immunotherapies. DC vaccines are typically generated using autologous (patient-derived) DCs exposed to tumor-associated or -specific antigens (TAAs or TSAs), in the presence of immunostimulatory molecules to induce DC maturation, followed by reinfusion into patients. Accordingly, DC vaccines can induce TAA/TSA-specific CD8(+)/CD4(+) T cell responses. Yet, DC vaccination still shows suboptimal anti-tumor efficacy in the clinic. Extensive efforts are ongoing to improve the immunogenicity and efficacy of DC vaccines, often by employing combinatorial chemo-immunotherapy regimens. In this Trial Watch, we summarize the recent preclinical and clinical developments in this field and discuss the ongoing trends and future perspectives of DC-based immunotherapy for oncological indications
    corecore