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Introduction
In the last decade, various information-rich resources have 
become available to study organisms on a systems-wide scale. 
The rapid accumulation of complex biological data in extensive 
compendia demands powerful and specialized pattern mining 
techniques.1–4 A popular group of pattern mining techniques 
are itemset mining and their derivative, association rule min-
ing. These methods are typically known for their ability to 
detect frequently co-occurring products in lists of customer 
supermarket baskets, effectively identifying the patterns in 
customers’ shopping behavior.5 In this context, the shopping 
cart is formally known as a transaction, while the individual 
products are the items. The discovery of sets of correlated 
items (ie, itemsets) is the goal of this data mining approach, 
which can be highly relevant in the context of life sciences. 
For example, one can investigate which genes are often coex-
pressed in tissue samples or which mutations often occur 
together in cancer tumors of a given type.

Frequent itemset mining has proven especially use-
ful in capturing and summarizing the characteristics of 
complex datasets to their important and most interesting 
aspects. Frequent patterns can be converted into rules with a 

discriminatory value that can, in turn, be used to build trans-
parent classifications. For example, if a gene C is always upreg-
ulated when genes A and B are downregulated, the frequent 
itemset {A|Down, B|Down, C|Up} can be rewritten as the 
rule {A|Down, B|Down}  {C|Up}, where the left-hand side 
(antecedent) of the rule leads to the consequent (right-hand 
side) of the rule. Rules of this type can be used to distinguish 
between tumor types, gene clusters, and various other biologi-
cal contrasts. The advantage of this approach is that the rules 
immediately explain why a particular label was given, which is 
an advantage over machine learning methods such as neural 
networks that act as a black box. The strengths of frequent 
itemset mining have been consequently demonstrated in a 
broad range of bioinformatics applications, ranging from gene 
expression data,6–8 annotation mining,9,10 and combinations 
thereof11,12 to interaction networks.13 A comprehensive over-
view of the broad range of implementations and bioinformat-
ics applications of frequent itemset mining techniques was 
recently published.14

Despite their demonstrated suitability to address various 
bioinformatics problems, frequent itemset mining techniques 
have not been generally adopted in day-to-day omics data 
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analysis workflows, and their popularity is only slowly gaining 
traction. This can be partially attributed to a number of short-
comings in the existing implementations. First of all, most are 
command line tools that often need to be compiled from the 
source code, and clear documentation regarding their instal-
lation is often lacking. This lack of user-friendliness poses 
a serious entrance barrier that daunts many life scientists. Sec-
ond, the output of the implementations is often presented in 
a format that is not readily interpretable by domain experts. 
The results of the mining process are typically long pattern 
lists containing flat text files. However, these lists are often 
very lengthy and highly redundant. This is caused, in part, 
by the fact that if a set is frequent, any of the smaller sub-
sets that it contains will also be frequent. This is also known 
as the apriori principle. For many pattern mining applications, 
there is often a so-called pattern explosion with results that 
list millions of patterns. Due to the verbose nature of these 
lists, user-friendly tools to process, query, and visualize this 
output are indispensible.

Convenient prioritization, filtering, cleaning, and inter-
pretation of pattern result lists require certain functionalities 
that are rarely covered by existing implementations. Third, 
iterative optimization of the pattern list and browsing through 
the output of these algorithms is often hard, as they create 
static output that needs to be processed and converted to a 
compatible format before the next step in the iterative min-
ing process can start. This can make result prioritization, 
an inherent part of many pattern discovery projects, a very 
cumbersome process.14

To address some of these limitations, software frameworks 
have been developed for interactive visual pattern mining, such 
as the MIME tool.15 Such toolboxes offer intuitive access to 
interestingness measures, mining algorithms, and postpro-
cessing algorithms to assist in identifying interesting patterns. 
By enabling interactive mining, it allows the user to com-
bine their subjective interestingness measure and background 
knowledge with a wide variety of objective measures to eas-
ily and quickly mine the most important and interesting 
patterns. In this article, we demonstrate the opportunities 

of frequent itemset mining in real-world bioinformatics  
scenarios and describe the application of three commonly 
used methods, namely, Apriori,5 arules,16 and MIME.15 This 
comparison is based on three representative bioinformatics use 
cases, ie, domain co-occurrence within proteins, interactions 
between domains in interacting proteins, and the response 
of the pathogen Mycobacterium tuberculosis to several drug 
treatments. For this purpose, we utilize data from Uniprot,2 
IntAct,4 and Colombos.1 The data files and step-by-step tuto-
rials on how to install and run the three presented tools on the 
three use cases are available in Supplementary Files 1–5. The 
goal of this study is to explore how interesting and biologi-
cally relevant patterns can be effectively generated with differ-
ent tools and provide the community with some guidance on 
how frequent itemset mining tools can be used in complex life 
science scenarios.

Materials and Methods
Frequent itemset mining. For datasets with large 

amounts of objects, features, or observations, it is not tractable 
to check all possible combinations and find correlated annota-
tion terms or biological entities. Frequent itemset mining is 
composed of a set of tools that are able to find co-occurring 
terms, known as items, in big data. These items can be any 
entity, ranging from genes and RNAs to proteins or drugs, 
and thus allow, for example, to identify coexpressed genes or 
proteins. The mining algorithms typically start from transac-
tional databases, as shown in Figure 1.

A transaction is simply a set of items, and a transactional 
database layout contains one transaction per row, in which 
each transaction refers to an observation, such as the collec-
tion of domains associated with a protein (Fig. 1) or the aggre-
gation of supermarket articles found in a shopping basket that 
was checked out by a single customer. These algorithms use 
heuristics to reduce the search space. For example, a priori-
based methods use the Apriori principle, which states that if 
an itemset is not frequent, all supersets of these items will also 
not be frequent. A pattern is frequent when its items appear 
more than expected, which means that its support, the absolute 
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Figure 1. Toy example of frequent itemset mining. The input of a frequent itemset mining approach is a transaction database (shown to the left). The 
output of the approach is a list of patterns and their support (shown to the right).
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number of times that a pattern occurs, needs to exceed a user-
defined minimal threshold. It is worth noting that frequency 
and support are often interexchanged, with frequency thresh-
olds stating the relative minimum (often 10%) threshold that 
needs to be exceeded. A hot topic in this field is the inability of 
frequent itemset mining to identify co-occurrence of continu-
ous values, as most methods require the user to conduct well-
chosen discretization steps that define the items evaluated 
by the algorithm. We have described our discretization steps 
where needed in the case studies described subsequently.

Datasets. In order to compare the benefits of each fre-
quent itemset method, several datasets were created from 
public resources, more specifically using InterPro, Colombos, 
and IntAct. For each of the case studies, a transaction data-
set was constructed based on the data downloaded from the 
database and saved in a simple space- or tab-delimited file. 
All of the transaction data files have been made available in 
Supplementary Files 1–3). A tutorial on how to practically 
execute the mining process has also been included (Supple-
mentary File 4), as well as a small Python script that compares 
the mining results for the Borgelt’s Apriori implementation 
(Supplementary File 5).

Protein domain analysis. For the first use case, we 
downloaded all known proteins of the human reference pro-
teome on February 19, 2014 from UniProt2 and retained only 
those that contained at least one InterPro domain.17 In total, 
this resulted in a set consisting of 20,636 proteins. In the 
second use case, we mapped this information on top of the 
IntAct protein–protein network,4 which was downloaded on 
the same day.

Colombos. All the microarray information was obtained 
from Colombos (a collection of microarrays for bacterial 
organisms),1 which contains numerous renormalized gene 
expression experiments extracted from the Gene Expression 
Omnibus18 and ArrayExpress.19 Using the advanced search 
option, we created a dataset for M. tuberculosis composed of 
several experiments in which the bacteria responded to anti-
biotics added to their growth medium. Next, the information 
in this dataset was discretized based on the fold change. Tra-
ditionally, log2-fold changes ranging from 1 to 1.5 are used 
to define the differential regulatory state of a gene. Here, 
we used a log2-fold change of 1.2, which results in a dataset 
that includes 25% of the protein-coding genes in M. tuber-
culosis that were differentially expressed in at least one con-
dition contrast. All log2-fold changes greater than 1.2 were 
considered upregulated, while those smaller than −1.2 were 
labeled as being downregulated. Fold changes between these 
two values were excluded from the dataset. For each gene, 
the log-fold change was simplified to a discretized state (up 
or down) and appended as a suffix to the contrast informa-
tion. For example, the gene Rv0823c has been identified to 
be downregulated (fold change −1.43) in study GSE1642, in 
which the treatment is an addition of 1 µM valinomycin. The 
combination of all this information into one label results in 

Rv0823c|Down, which is a discrete item that can be used in 
the mining process.

Tools. Apriori. Apriori is one of the oldest, most simple, 
and popular frequent itemset mining algorithms.20 It is avail-
able in various implementations that vary from command line 
tools to parts of data analysis software suites. In this article, 
we use Christian Borgelt’s Apriori implementation, which is 
available at http://www.borgelt.net/apriori.html.21 We com-
piled the C source code and ran the implementation using the 
synthaxis./apriori [options] infile [outfile] from the terminal 
on a Macintosh running OS 10.9 Mavericks.

One of the major advantages of Borgelt’s Apriori version, 
other than its improved pattern identification efficiency, is 
its support for distinctly different types of itemsets, includ-
ing maximal, closed, and open itemsets. By default, Apriori 
generates all possible itemsets (open), which are typically far 
too many to analyze. The information contained by these 
patterns is largely redundant, which means that the result-
ing pattern list can be efficiently reduced with a minimal loss 
of information content. For example, only itemsets that have 
no frequent superset can be retained (maximal itemsets). This 
results in a major reduction in patterns that cannot be justified 
in every scenario. A more balanced general approach that still 
effectively reduces the output of the mining process consists 
of mining only closed patterns. These are formally defined as 
itemsets that have no immediate superset with the same sup-
port value. Although all these three pattern classes have been 
used to approach various life science problems, closed itemsets 
have been the most prominent in analyses that deal with the 
typical genome- or proteome-wide scale datasets.14

Arules. In addition to command line tools, several efforts 
have been made to bring frequent itemset mining to other 
platforms. One such project is the R package arules, which 
also contains the Apriori implementation by Borgelt in addi-
tion to other mining algorithms.16

Arules provides an entire toolbox for the representation, 
manipulation, and analysis of frequent itemsets and association 
rules in R. It contains several scoring metrics and allows the 
calculation of various properties, such as dissimilarity. Arules 
is also compatible with arulesViz,22 which allows rapid visual-
ization of the mining results. Arules is available for download 
through the R interface as a CRAN distribution.

MIME. The third tool covered in this study is MIME.15 
MIME provides a dynamic and interactive graphical environ-
ment to interact with the dataset and retrieve patterns. It hosts 
several popular pattern mining algorithms, such as Apriori,5 
Eclat,23 tiling,24 top-K mining,25 the OPUS Miner,26 and 
Carpenter,6 as well as various classification algorithms that 
are based on association rule mining.27–29 Similar to arules, 
MIME has various scoring measures (so-called interestingness 
metrics) and, furthermore, supports iterative mining. The 
software is written in Java and depends on two Java libraries, 
namely, QTJambi (http://qt-jambi.org) and WEKA,30 and is 
available from http://adrem.ua.ac.be/mime.
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Results and Discussion
By means of practical use cases, we will go through increas-
ingly complex life sciences scenarios that at each step require 
additional preprocessing steps to translate the problem into 
a format recognizable by the tools.

Case study 1: analyzing domain co-occurrence within 
proteins. The simplest use case for frequent itemset mining 
is the analysis of domain co-occurrence within proteins. The 
transaction dataset contains all human proteins documented 
in InterPro with at least one protein domain. Herein, each 
protein is considered as a transaction, which equals a single 
line in the input file containing the domains (items). In total, 
20,636 proteins were present in the dataset. All three tools 
were able to find the most frequent individual domains by set-
ting the maximal number of items in an itemset to 1. MIME 
delivers this information without requiring an extra step. This 
step allows us to identify which domains occur the most in the 
dataset and which is important for the calculation of several 
quality measures, such as lift value. It also gives the researcher 
a quick initial idea of which domains are most likely to appear 
in frequent itemsets. If these domains associate in an aspe-
cific manner with another domain and can be expected by 
random combination (low lift value), the pattern is not inter-
esting for a biologist who tries to identify domains that are 
functionally correlated.

The most frequent domain was identified to be IPR027417, 
a P-loop containing nucleoside triphosphate hydrolase, which 
occurred 1329 times (6.44% of all proteins). Other than 
this domain, only IPR013783 (4.44%), IPR011009 (4.31%), 
IPR000719 (3.96%), and IPR015943 (3.19%) occur in more 
than 3% of the human proteins. IPR000719 and IPR011009 
(protein kinase-like domain) occurred together in the majority 
of proteins they occurred in, as represented by the correspond-
ing support value (3.94%). This pattern was the most frequent 
of all associated InterPro terms, with the highest support and a 
high lift value, which suggests a nonrandom association. How-
ever, this can easily be attributed to the fact that the former 
is a protein kinase domain and the latter is a protein kinase-
like domain, with IPR000719 being a subset of IPR011009 
and kinases being a family containing a significant number 
of proteins. Interestingly, one would then expect IPR000719 
(819 proteins) to always co-occur with IPR011009, but this 
was apparently not the case for five proteins, namely, C9JE15 
(aarF domain-containing protein kinase 2), D6RHX9 (cal-
cium/calmodulin-dependent protein kinase type II subunit 
alpha), E9PPN3 (N-terminal kinase-like protein), F8W0N2 
(serine/threonine-protein kinase receptor R3), and H0YAH6 
(epithelial discoidin domain-containing receptor 1). In the 
following updates of Uniprot, these five proteins had the 
IPR011009 domain added, which illustrates that even basic 
frequent itemset mining can be applied to detect inconsisten-
cies in annotations.

A combination of the low cutoff percentages and the com-
plexity of biological data make setting a minimal threshold 

a rather daunting task. One approach is iteratively lowering 
the threshold and keeping it above the value where the number 
of patterns explodes. This parameter fine-tuning may be time 
consuming, and the arbitrary threshold can be hard to justify 
biologically. In this case, it can be useful to simply search for 
100 most frequent patterns without much knowledge of their 
individual protein abundance. In many settings, the manual 
evaluation of the pattern results will limit itself to those pat-
terns that have the highest support value, as these will be most 
frequent in the data set and often the most relevant or interest-
ing. For such a purpose, top-K mining would be much more 
straightforward as the only parameter it requires is setting K 
to 100. Of the three implementations addressed, this is only 
possible with MIME. Top-K mining with the other solu-
tions requires knowledge of Java or can be cumbersome.31,32 
Figure 2 shows the output of the three itemset mining imple-
mentations. For apriori and arules, we iteratively optimized 
a lower threshold in order to display these results. An over-
view of the most frequent itemsets obtained with MIME is 
listed in Table 1.

The 100 most frequent itemsets feature combinations of 
63 unique protein domains. IPR013783 (immunoglobulin-
like fold), IPR001881 (epidermal growth factor [EGF]-like 
calcium binding domain), IPR000152 (EGF-like aspartate/
asparagine hydroxylation site), IPR018097 (EGF-like cal-
cium binding), IPR013032 (EGF-like conserved site), and 
IPR000742 (EGF-like domain) appear in over 11 unique pat-
terns of these 100 most frequent itemsets.

The use of frequent itemset mining techniques, without 
accounting for the hierarchical structure of annotations, will 
typically lead to this kind of frequent but trivial patterns with 
no true informative value. For example, IPR007087 (zinc fin-
ger, C2H2) is a child of the CH2-like zinc fingers (IPR015880). 
Patterns of this kind create additional overhead that needs to 
be filtered out to separate it from patterns with true informative 
value. This problem has already been elaborately described in 
literature, especially for Gene Ontology analysis.10,33 Therefore, 
we grouped domains into functional categories, based on the 
structure of the InterPro annotation tree, to remove the redun-
dant annotations and found immunoglobulin-like domains, 
CH2 zinc fingers, protein kinase-like domains, and WD40 
repeats to be the most prevalent in human proteins when look-
ing at individual domains. However, the 100  most frequent 
itemsets then consisted of vastly different frequent patterns 
at much lower frequencies. For example, some of the most 
prevalent patterns were the co-occurrence of protein kinase-
like domains (IPR011009) and the ATP-binding domain 
(3.14%). Co-occurrence within tyrosine kinases and SH2-
domains was also prevalent. A full overview of the 100 most 
frequent itemsets is shown in Supplementary File 6. Overall, 
frequent itemset mining can be used to cluster proteins based 
on their domain annotations and explore the structure and 
relationships that may exist in this dataset. Figure 3 shows the 
mined patterns in a pie chart representation, from three broad 
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categories that exist in the dataset, namely, the kinase-related, 
helicase-related, and WD40-related patterns. Each pattern in 
Figure 3 is represented as a path from the center to the exterior 
rings. Neither tool required extensive programming skills to 
tackle this use case.

Case study 2: mining for co-occurring domains 
between interacting proteins. A topic of great biological 
interest is the identification domains that are likely to play 

key roles in protein–protein interactions, in, for example, 
drug discovery.34 We mapped the InterPro domains17 cor-
responding to each UniProt identifier2 in the human IntAct 
protein–protein interaction network4 into transactions. Each 
transaction then represents a pair of proteins, and the items 
within a transaction correspond to the union of domains for 
both proteins in the pair. We then removed all excess protein 
domains using the grouping method described in case 1 to  

Figure 2. Input (left) and output (right) of frequent itemset mining in popular frequent itemset mining implementations. The upper part shows the look 
and feel of the terminal-based Apriori-Borgelt implementation. The output of this tool shows each pattern in turn on each line with the support value as a 
frequency between brackets. In the middle, a similar figure is shown for the arules package. The arules output is an R data object with the items that make 
up a pattern in one column and the support in the second column. The bottom of the figure features the input and output of MIME. Note here that the red 
dots in the upper whitespace indicate the items, which are described by their name and their individual support (between brackets). These items can be 
dragged and dropped in the larger white area below to modify the mining output.
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prevent noninformative patterns from hierarchical annotations 
from appearing. However some patterns may still result from 
intraprotein domain co-occurrences, as we did not consider 
the protein of origin for each of the domains. Therefore, the 
intraprotein patterns obtained in case 1 were subtracted from 
the combined list. For Borgelt’s Apriori implementation, we 
had to perform the mining process for both datasets using the 
lowest possible threshold to avoid the pattern explosion and 
then removed all the patterns appearing in the list intersec-
tion with a Python script. In arules, the results of both mining 
processes could be compared using data frames within the R 

framework,35 with a basic understanding of R language syn-
tax. MIME required no such scripting effort and allowed to 
compare the result files from the two mining processes directly 
using the compare worksheets function.

Either tool was able to find large amounts of frequently 
recurring motifs within proteins that have been described in 
literature, with notable examples such as interactions between 
the 14-3-3 domain (IPR000308) and S/T protein kinase 
domain (IPR002290).36 In the IntAct network, we identified a 
total of 272 interactions that exhibited this particular pattern, 
with a total of 76 unique proteins being involved (42 kinases). 
Figure 4 shows the distribution of the functional annotations 
of the proteins corresponding to the domains in the interac-
tion dataset. As can be seen in Figure 4, kinase interactions 
seem to be the most common in the human interactive data-
set, with all of the top functions referring to this regulatory 
mechanism. An overview of the 100 most frequent patterns is 
shown in Supplementary File 7. Frequent itemsets may also be 
used to detect complexes, as indicated by the domain associa-
tions between Skp1-containing proteins and F-box proteins, 
which have been previously described.37,38

We grouped all the proteins corresponding to a rule 
and looked for potential biological enrichments using clas-
sic overrepresentation based on hypergeometric testing with 
Benjamini–Hochberg correction (P-value , 0.05). The results, 
visualized in Cytoscape,39 are shown in Figure  5. There is 
a clear functional coherence in interacting proteins, which 
is naturally reflected in the combination of elements at the 
domain level. For example, many proteins involved in apop-
tosis were characterized as containing the death-like domain 
(IPR011029) and binding sites for TNF (IPR006035) and 
formed a more densely interconnected protein network with 
their associated kinases.

Compared with the textual output of apriori and arules, 
navigating through the dataset using MIME is more flexible. 
For example, a domain of interest could be dragged into the pat-
tern browser window and extended by adding other domains in 
a drag and drop fashion. MIME automatically recalculates all 
quality measures it contains each time a modification is made 
to the pattern list. This means that the lift values, area, coverage, 
support, and many more measures are consistently up to date. 
This enables a more dynamic approach to manual supervision 
of the pattern list, which can speed up the discovery of interest-
ing properties in a dataset.

It should be mentioned that specialized frequent item-
set mining approaches exist to rapidly find patterns that dis-
criminate between sets or more formally defined, ie, patterns 
whose support value increase significantly from one dataset 
compared with the other. Discriminative or emergent patterns 
have been suggested to have a higher value for use in classifica-
tion models and have been extensively reviewed.40 In this case 
study, such methods could be used to more rapidly identify the 
patterns that are more likely to be the result of interacting pro-
teins or, by extension, distinguish between protein families.

Table 1. The 30 most frequent InterPro intraprotein patterns.

Itemset Frequency Support

IPR000719 IPR011009 3,94 814

IPR007087 IPR015880 2,76 569

IPR007110 IPR013783 2,72 562

IPR017986 IPR015943 2,71 559

IPR001680 IPR015943 2,55 526

IPR001680 IPR017986 2,49 514

IPR001680 IPR017986 IPR015943 2,47 510

IPR013087 IPR007087 2,36 487

IPR013087 IPR015880 2,30 474

IPR013087 IPR007087 IPR015880 2,28 471

IPR017441 IPR011009 2,21 457

IPR017441 IPR000719 IPR011009 2,19 452

IPR000504 IPR012677 2,18 450

IPR011989 IPR016024 1,78 368

IPR003599 IPR013783 1,76 363

IPR008271 IPR000719 1,73 357

IPR008271 IPR000719 IPR011009 1,73 356

IPR001849 IPR011993 1,72 355

IPR002110 IPR020683 1,62 334

IPR003599 IPR007110 IPR013783 1,50 310

IPR002048 IPR011992 1,39 286

IPR003961 IPR013783 1,33 275

IPR019775 IPR001680 1,24 255

IPR019775 IPR001680 IPR017986 1,23 254

IPR019775 IPR001680 IPR015943 1,23 254

IPR019775 IPR001680 IPR017986 
IPR015943 

1,23 253

IPR001841 IPR013083 1,22 251

IPR013032 IPR000742 1,18 243

IPR001806 IPR027417 1,12 232

IPR003598 IPR013783 1,11 229
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Case study 3: M. tuberculosis response to stress. In the 
third case study, we downloaded gene expression profiles of M. 
tuberculosis in several antibiotic studies from the microbial gene 
expression compendium Colombos.1 We discretized the fold 
changes of the expression into upregulated (fold change .1.2) 
and downregulated (fold change  ,−1.2). Discretization is 
essential for traditional frequent itemset mining. In this case, 
the transactions consist of the different expression experimen-
tal contrasts, and their items are the up- or downregulated 

genes within these contrasts. In total, the dataset contains 
47 contrasts, and the most frequent differentially expressed 
items were WhiB7|Down (21% or 47%), esxS|Up (16% or 
34%), higB|Down (16% or 34%), PE20|Down (16% or 34%), 
and esxH|Up (15% or 32%). Supplementary File 8 shows the 
resulting mining output.

The most frequent itemsets have a support value of 14, 
and several underlying types of frequent itemsets are immedi-
ately apparent, either in the graphical display of MIME or in 

Figure 3. Visual representation of pattern clustering. Each pie chart starts from a single item in the center and expands outward with those items that 
were found in associated patterns. The size of each piece in the pie chart indicates the support value of this pattern and its ancestor, giving a relative 
image of how frequent the items are compared with the others. For the singletons, this equals their individual frequency (upper circular plot, first layer). 
Only patterns with a length of two items are shown for legibility reasons in the figure, but this can be extended to virtually any itemset size. Detail plots of 
the size-2 itemsets are also shown (right, bottom left, bottom right) and indicate if a given item appears (dark blue node central in plot), how likely it will 
be associated with any of the other terms. The purple pie chart contains kinase-related patterns, green consists of GTPases and Helicases, and red is 
associated with WD40 repeats.
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the textual output of arules and apriori. A first type of pattern 
refers to the nature of transcription in prokaryotes. For exam-
ple, esxH|Up (16) and esxS|Up (15) were strongly correlated in 
an itemset with a frequency of 30% (14). In the two cases, both 
genes did not occur together, due to marginally falling outside 
the boundaries set by the discretization procedure. esxH and 
esxS are part of the same transcription unit, which codes a Type 
VII secreted compound (EsxH) that impairs trafficking in the 
host organism.41 In order to fulfill its purpose, it acts in concert 
with esxG, which is in the same transcription unit and thus 
also upregulated. esxG appeared nine times in our dataset, each 
time upregulated (7) or downregulated (2) when the other ele-
ments of the operon were as well.

Another key pattern turned out to be PE20|Down and 
whiB7|Down, also with 14 as the support value. WhiB7 is a 
transcriptional activator important for antibiotic resistance,42 
and PE20 is a largely uncharacterized protein with a length 
of 99 amino acids that has an effect on pathogenicity,43 but 
their support value, in comparison with the large amount of 
rules these two genes appear in, suggests a key role in M. tuber-
culosis response to several antibiotics. This pattern could be 
further extended to include higB|Down, esxH|Up, esxR|Up, 
and kasB|Up with a support value of 10 (21%). This was espe-
cially easy to do using MIME and the best extension of bas-
ket functionality, which greatly facilitates pattern exploration 
with the otherwise often laborious task of browsing through 
the often vast sets of patterns originating from more extensive 

datasets. We extended the itemset to the maximal length at 
a minimal support value of 7, resulting in a set of 11  genes 
enriched in the generation of precursor metabolites and energy 
metabolism (GO:0006091) that is strongly interconnected at 
transcriptional levels (Fig. 6). We then investigated which anti-
biotic treatments contributed to it, as seven transactions sup-
ported it (and thus maximally seven different drug treatments). 
We found these contrasts to be Streptomycin:5 (GSE1642), 
Amikacin:10 (GSE1642), Streptomycin:5 (GSE1642), Ami-
kacin:5 (GSE1642), Amikacin:5 (GSE1642), Tetracycline:10 
(GSE1642), and Capreomycin:10 (GSE1642), respectively. 
Amikacin, capreomycin, and streptomycin are aminoglycoside 
antibiotics that tend to target the initiation of protein syn-
thesis by causing mistranslations.44 Interestingly, tetracycline, 
which acts by disruption of normal mRNA recognition by the 
tRNA anti-codon, was associated with the very same itemset 
even though the antibiotic has a vastly different structure and 
mode of action. As such, frequent itemsets that combine essen-
tial disturbances of genes may prove interesting to identify 
novel compounds that are vastly different, but exhibit a simi-
lar downstream effect on gene expression. Exploratory analysis 
with user-friendly pattern mining software can be a great assis-
tance for this task.

Conclusions
Several implementations, which do not require exten-
sive programming skills, exist to perform biological data 

Figure 4. Prevalence of several Gene Ontology terms that could be associated with the top rules. The importance of regulatory mechanisms becomes 
immediately clear when looking at the most frequent terms. The top term has a support value of 808 (GO:0005524) refers to ATP-binding functions, while 
the second directly names protein phosphorylation (GO:0006468) as the underlying mechanism of this figure. The other terms, such as GO:0004674 
(protein serine/threonine kinase activity), GO:0004672 (protein kinase activity), and GO:0018108 (peptidyl-tyrosine activity) only further strengthen 
this observation. Overall, we can conclude that in the human interactome dataset, interactions with kinases seem to be the most prevalent, with 
kinases co-occurring with an extremely diverse amount of substrate domains. However, the most specific substrate domains are only found at lower 
support values.
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mining with frequent itemsets. In three typical bioinfor-
matics experiments, we found each method to excel at dif-
ferent aspects. Borgelt’s Apriori implementation was very 
fast using the command line, but lacked the flexibility that 
arules has in the R environment. However, arules requires 
the user to have an understanding of the R scripting envi-
ronment, and this is characterized by a steeply increasing 
learning curve for more complex operations, such as com-
paring results from two mining processes. MIME showed 
its value when subsequent mining steps were required, as 
the output of one mining step did not have to be processed 
to be usable in the next mining iteration. This is espe-
cially useful in exploratory analysis of complex biological 
datasets. The presence of additional mining algorithms in 
a graphical environment in which patterns can be modified 
by simply dragging and dropping items further strengthens 
its ease of use.
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Figure 5. Frequent itemsets were mapped to a Cytoscape network that displays which domains are often found to be associated in interacting proteins. 
The width of the edges indicates the betweenness centrality, while the node size is representative of the degree of the node. Central in this network 
seem to be IPR001452 (SH3 domain), IPR013783 (immunoglobulin-like fold), and IPR027417 (P-loop NTPase), which is the most prevalent domain in 
nucleotide-binding proteins. However, the items IPR011009 and IPR000719 were present in the highest number of distinct itemsets. These terms refer to 
the protein kinase-like domain and the protein kinase domain, respectively, and their importance supports the observations made in Figure 4 that indicate 
kinase interactions form a vast part of the human interactome. It is interesting to note that of the 1753 proteins featuring a WD40/YVTN repeat-like-
containing domain (IPR015943) in human beings, only associations with the kinase domain (IPR000719) and the kinase-like domain (IPR011009) were 
retained. The concanavalin A-like lectin/glucanases superfamily (IPR008985) is also shown to have a relatively high centrality in this network.
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listed to make retracing patterns easier. To use in frequent 
itemset mining, strip everything before the transactions.

Supplementary File 2. Protein domains in binary inter-
action  dataset. This file contains all InterPro domains that 
were mapped to interactions that were extracted from IntAct. 
The UniProt accessions of both interaction partners in the 
binary interaction are shown before the colon. Strip this part 
to only retain the interactions. Making the contrast between 
the mining results of Supplementary File 1 and those in this 
file will remove the protein-specific patterns, as well as several 
patterns that result from the ontology itself.

Supplementary File 3. M. tuberculosis  dataset. This 
file contains all transactions extracted from the Colombos 
dataset. Each row represents the response to an antibi-
otic, in which only the genes that were significantly up- or 
downregulated according to the logFC discretization step 
were retained. Each item combines the gene name with its 
individual response.

Supplementary File 4.  Tutorial. This brief tutorial 
describes the practical use of each of the three frequent itemset 
implementations on the case studies featured in this article.

Supplementary File 5. Python script. This file contains 
a simple Python script that compares the output of the Apriori 
Borgelt implementation to another file with similar structure. 
This can be used to find overlaps and differences between the 
mining output of Case 1 and Case 2.

Supplementary File 6. 100 most frequent InterPro intra-
protein patterns. The 100 most frequent intra-protein itemsets 
that contain domain associations. Most itemsets consist of 

combinations of kinases, patterns resulting from the ontology 
tree, immunoglobulins, WD40 repeats and others. This file 
extends Table 1.

Supplementary File 7. 100 most frequent InterPro inter-
protein domain patterns. This table shows the 100 most fre-
quent domain associations in protein-protein interaction data. 
We obtained this output by subtracting the intra-protein pat-
terns. We find that the top 100 length 2 rules mostly consist of 
combinations of only 45 distinct domains. Most of these terms 
refer to kinase cascades (associations between serine/threonine 
and tyrosine kinases), interactions between SH2 and SH3 
domains and kinases, as well as a large amount of domains that 
is involved in ubiquitinylation and immunological response. 
All patterns that could be produced by the InterPro ontology 
were filtered out, which leaves the interaction between the 
SH2 and the SH3 domain as the most abundant.

Supplementary File 8. 100  most frequent itemsets in 
the M. tuberculosis use case. In this table the 100 itemsets are 
shown that represent the gene regulation response to several 
antibiotics included in Colombos. Every item is a combination 
of a gene name and its regulatory state, which was the result of 
a discretization step (logFC .1.2: upregulated, ,−1.2: down-
regulated. Several genes, such as whiB7, higB, and PE20, are 
strongly co-regulated. We were also able to identify transcrip-
tional units, such as the esx-unit.
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