173 research outputs found

    Recurrent refractory Kawasaki disease

    Get PDF
    Background: Kawasaki disease is a common childhood vasculitis. Unrelenting fever after treatment with intravenous immunoglobulin (IVIG) occurs in 10-15% of patients and is associated with a greater risk of developing coronary aneurysms. Aim: Describe a very unique case of recurrent and refractory Kawasaki disease. Case report: A 3 year old boy presented with 3 days of fever, rash, pharyngeal and gingival erythema, and swollen extremities. Laboratory investigations revealed leukocytosis, C–reactive protein 25.8 mg/dl, and erythrocyte sedimentation rate 100 mm/hr. Echocardiography disclosed diffuse dilatation of all proximal coronary arteries. The child received IVIG (2g/kg) and aspirin (100 mg/kg/d) with no response. IVIG was repeated, followed by methylprednisolone 30 mg/kg for 3 days, but the child remained febrile. Infliximab (5 mg/kg) was thereupon employed with prompt defervescence. Low-dose aspirin was continued, as well as clopidogrel. Echocardiographic findings remained stable. Six months after the initial episode, the child again presented with fever, irritability, sore throat and nuchal rigidity. Physical examination revealed cracked, swollen lips, oropharyngeal erythema, posterior cervical lymphadenopathy, and rash. Desquamation of the distal extremities was observed some days later. Aneurysms were detected, involving the left and right main coronary arteries, as well as the left anterior descending coronary. Magnetic resonance angiography of the chest and abdomen revealed no other involved vessels. The child again received IVIG, pulse methylprednisolone, and infliximab, but remained febrile and developed significant arthritis, requiring daily prednisolone. He is now asymptomatic. Conclusions: Currently, recurrent and refractory Kawasaki disease still represents a therapeutic challenge

    Efficacy of ImageJ in the assessment of apoptosis

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To verify the efficacy of ImageJ 1.43 n in determining the extent of apoptosis which is a complex and multistep process.</p> <p>Study Design</p> <p>Cisplatin in different concentrations was used to induce apoptosis in cultured Hep2 cells. Cell viability assay and nuclear image analysis of stained Hep2 cells were used to discriminate apoptotic cells and cells suspected to be undergoing apoptosis from control cells based on parameters such as nuclear area, circularity, perimeter and nuclear area factor (NAF), in association with visual morphology.</p> <p>Results</p> <p>Image analysis revealed a progressive and highly significant decrease in nuclear area factor detected in apoptotic cells and in cells suspected of undergoing apoptosis compared to the control cells (P-values < 0.01). Some of the other studied parameters showed also the same trend. This decrease was assumed to indicate DNA loss. Image analysis results correlated positively and significantly with the results obtained by cell viability assay (R = 0.958, P-value = 0.042). NAF was the most reliable parameter in assessment of apoptosis.</p> <p>Conclusion</p> <p>Nuclear area factor can be calculated using powerful free and open-source software. Consequently, a quantitative measure of apoptosis can be obtained that is linked to morphological changes. ImageJ 1.43 n may therefore provide a useful tool for the assessment and discrimination of apoptotic cells.</p> <p>Virtual slides</p> <p>The virtual slide(s) for this article can be found here:</p> <p><url>http://www.diagnosticpathology.diagnomx.eu/vs/5929043086367338</url></p

    Comment on "On the subtleties of searching for dark matter with liquid xenon detectors"

    Full text link
    In a recent manuscript (arXiv:1208.5046) Peter Sorensen claims that XENON100's upper limits on spin-independent WIMP-nucleon cross sections for WIMP masses below 10 GeV "may be understated by one order of magnitude or more". Having performed a similar, though more detailed analysis prior to the submission of our new result (arXiv:1207.5988), we do not confirm these findings. We point out the rationale for not considering the described effect in our final analysis and list several potential problems with his study.Comment: 3 pages, no figure

    Prognostic value of nuclear morphometry in patients with TNM stage T1 ovarian clear cell adenocarcinoma

    Get PDF
    In 40 patients with TNM stage T1 ovarian clear cell adenocarcinoma, we used nuclear morphometry to study the relations among morphometric variables, clinical prognostic factors and outcome. The presence of one or more giant nuclear cells was positively associated with death (OR = 10.6, P = 0.02) and tended to be associated with disease recurrence (OR = 5.1, P = 0.07). Nuclear irregularity (expressed in terms of the nuclear roundness factor) was positively associated with both death (OR = 8.6, P = 0.02) and disease recurrence (OR = 8.2, P = 0.02). A combination of giant nuclear cell presence or nuclear irregularity proved to be a useful prognostic indicator, with a sensitivity and specificity of 83% and 71% in the prediction of death, and 75% and 71% in the prediction of disease recurrence. Patients' age and substage were of no prognostic value. We conclude that the nuclear morphometric characteristics, especially the presence of giant nuclear cells and nuclear irregularity, may be useful in predicting outcome in patients with early stage ovarian clear cell adenocarcinoma. © 1999 Cancer Research Campaig

    Coating mechanisms of single-walled carbon nanotube by linear polyether surfactants: insights from computer simulations

    Get PDF
    The noncovalent coating of carbon-based nanomaterials, such as carbon nanotubes, has important applications in nanotechnology and nanomedicine. The molecular modeling of this process can clarify its mechanism and provide a tool for the design of novel materials. In this paper, the coating mechanism of single-walled carbon nanotubes (SWCNT) in aqueous solutions by 1,2-dimethoxyethane oxide (DME), 1,2-dimethoxypropane oxide (DMP), poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO) pentamers, and L64 triblock copolymer chains have been studied using molecular dynamics (MD) simulations. The results suggest a preferential binding to the SWCNT surface of the DMP molecules with respect to DME mainly driven by their difference in hydrophobicity. For the longer pentamers, it depends by the chain conformation. PPO isomers with radius of gyration larger than PEO pentamers bind more tightly than those with more compact conformation. In the case of the L64 triblock copolymer, the coating of the SWCNT surface produces a shell of PPO blocks with the PEO chains protruding into bulk water as expected from the so-called nonwrapping binding mechanism of SWCNT. In addition, the polymer coating, in qualitative agreement with experimental evidence on the poor capability of the L64 to disperse SWCNT, do not prevent the formation of CNT aggregates

    Geochemical detection of carbon dioxide in dilute aquifers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carbon storage in deep saline reservoirs has the potential to lower the amount of CO<sub>2 </sub>emitted to the atmosphere and to mitigate global warming. Leakage back to the atmosphere through abandoned wells and along faults would reduce the efficiency of carbon storage, possibly leading to health and ecological hazards at the ground surface, and possibly impacting water quality of near-surface dilute aquifers. We use static equilibrium and reactive transport simulations to test the hypothesis that perturbations in water chemistry associated with a CO<sub>2 </sub>gas leak into dilute groundwater are important measures for the potential release of CO<sub>2 </sub>to the atmosphere. Simulation parameters are constrained by groundwater chemistry, flow, and lithology from the High Plains aquifer. The High Plains aquifer is used to represent a typical sedimentary aquifer overlying a deep CO<sub>2 </sub>storage reservoir. Specifically, we address the relationships between CO<sub>2 </sub>flux, groundwater flow, detection time and distance. The CO<sub>2 </sub>flux ranges from 10<sup>3 </sup>to 2 × 10<sup>6 </sup>t/yr (0.63 to 1250 t/m<sup>2</sup>/yr) to assess chemical perturbations resulting from relatively small leaks that may compromise long-term storage, water quality, and surface ecology, and larger leaks characteristic of short-term well failure.</p> <p>Results</p> <p>For the scenarios we studied, our simulations show pH and carbonate chemistry are good indicators for leakage of stored CO<sub>2 </sub>into an overlying aquifer because elevated CO<sub>2 </sub>yields a more acid pH than the ambient groundwater. CO<sub>2 </sub>leakage into a dilute groundwater creates a slightly acid plume that can be detected at some distance from the leak source due to groundwater flow and CO<sub>2 </sub>buoyancy. pH breakthrough curves demonstrate that CO<sub>2 </sub>leaks can be easily detected for CO<sub>2 </sub>flux ≥ 10<sup>4 </sup>t/yr within a 15-month time period at a monitoring well screened within a permeable layer 500 m downstream from the vertical gas trace. At lower flux rates, the CO<sub>2 </sub>dissolves in the aqueous phase in the lower most permeable unit and does not reach the monitoring well. Sustained pumping in a developed aquifer mixes the CO<sub>2</sub>-affected water with the ambient water and enhances pH signal for small leaks (10<sup>3 </sup>t/yr) and reduces pH signal for larger leaks (≥ 10<sup>4</sup>t/yr).</p> <p>Conclusion</p> <p>The ability to detect CO<sub>2 </sub>leakage from a storage reservoir to overlying dilute groundwater is dependent on CO<sub>2 </sub>solubility, leak flux, CO<sub>2 </sub>buoyancy, and groundwater flow. Our simulations show that the most likely places to detect CO<sub>2 </sub>are at the base of the confining layer near the water table where CO<sub>2 </sub>gas accumulates and is transported laterally in all directions, and downstream of the vertical gas trace where groundwater flow is great enough to transport dissolved CO<sub>2 </sub>laterally. Our simulations show that CO<sub>2 </sub>may not rise high enough in the aquifer to be detected because aqueous solubility and lateral groundwater transport within the lower aquifer unit exceeds gas pressure build-up and buoyancy needed to drive the CO<sub>2 </sub>gas upwards.</p

    Dark Matter Results from 225 Live Days of XENON100 Data

    Get PDF
    We report on a search for particle dark matter with the XENON100 experiment, operated at the Laboratori Nazionali del Gran Sasso (LNGS) for 13 months during 2011 and 2012. XENON100 features an ultra-low electromagnetic background of (5.3 \pm 0.6) \times 10^-3 events (kg day keVee)^-1 in the energy region of interest. A blind analysis of 224.6 live days \times 34 kg exposure has yielded no evidence for dark matter interactions. The two candidate events observed in the pre-defined nuclear recoil energy range of 6.6-30.5 keVnr are consistent with the background expectation of (1.0 \pm 0.2) events. A Profile Likelihood analysis using a 6.6-43.3 keVnr energy range sets the most stringent limit on the spin-independent elastic WIMP-nucleon scattering cross section for WIMP masses above 8 GeV/c^2, with a minimum of 2 \times 10^-45 cm^2 at 55 GeV/c^2 and 90% confidence level.Comment: 6 pages, 5 figures. Matches version accepted by PRL. Includes limits up to 10 TeV/c^2, published as supplementary material: http://prl.aps.org/supplemental/PRL/v109/i18/e181301 Please cite high mass limits as "Phys. Rev. Lett. 109, 181301 (2012), online supplementary material.
    • …
    corecore