88 research outputs found

    Inheritance and allelic relationships of anthracnose resistance in common bean paloma cultivar

    Get PDF
    Anthracnose, caused by Colletotrichum lindemuthianum L., is one of the most important fungal diseases of common bean (Phaseolus vulgaris, L). Genetic resistance is the most effective method for this disease control. So far, twenty one resistance genes have been already characterized, and among them, only eight are Andean and due to it, the search for Andean resistance sources is really necessary. This way, the work aimed to characterize the genetic resistance of an Andean common bean cultivar.Fil: Castro, S. A. L.. Universidade Estadual de Maringá; BrasilFil: Gonçalves Vidigal, M. C.. Universidade Estadual de Maringá; BrasilFil: Nanami, D. S. Y.. Universidade Estadual de Maringá; BrasilFil: Frias, A. A. T.. Universidade Estadual de Maringá; BrasilFil: Franzon, R. C.. Universidade Estadual de Maringá; BrasilFil: Poletine, J. P.. Universidade Estadual de Maringá; BrasilFil: Lacanallo, G. F.. Universidade Estadual de Maringá; BrasilFil: Galván, Marta Zulema. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Salta-Jujuy. Estación Experimental Agropecuaria Salta; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta; Argentin

    Protocol for Safe, Affordable, and Reproducible 1 Isolation and Quantitation 2 of SARS-CoV-2 RNA from Wastewater

    Full text link
    The following protocol describes our workflow for processing wastewater with the goal of detecting the genetic signal of SARS-CoV-2. The steps include pasteurization, virus concentration, RNA extraction, and quantification by RT-qPCR. We include auxiliary steps that provide new users with tools and strategies that will help troubleshoot key steps in the process. This protocol is one of the safest, cheapest, and most reproducible approaches for the detection of SARS-CoV-2 RNA in wastewater. Furthermore, the RNA obtained using this protocol, minus the pasteurization step, can be sequenced both using a targeted approach sequencing specific regions or the whole genome. The protocol was adopted by the New York City Department of Environmental Protection in August 2020 to support their efforts in monitoring SARS-CoV-2 prevalence in wastewater in all five boroughs of the city. Owing to a pasteurization step, it is safe for use in a BSL1+ facility. This step also increases the genetic signal of the virus while making the protocol safe for the personnel involved. This protocol could be used to isolate a variety of other clinically relevant viruses from wastewater and serve as a foundation of a wastewater surveillance strategy for monitoring community spread of known and emerging viral pathogens

    Are patterns of fine-scale spatial genetic structure consistent between sites within tropical tree species?

    Get PDF
    Documenting the scale and intensity of fine-scale spatial genetic structure (FSGS), and the processes that shape it, is relevant to the sustainable management of genetic resources in timber tree species, particularly where logging or fragmentation might disrupt gene flow. In this study we assessed patterns of FSGS in three species of Dipterocarpaceae (Parashorea tomentella, Shorea leprosula and Shorea parvifolia) across four different tropical rain forests in Malaysia using nuclear microsatellite markers. Topographic heterogeneity varied across the sites. We hypothesised that forests with high topographic heterogeneity would display increased FSGS among the adult populations driven by habitat associations. This hypothesis was not supported for S. leprosula and S. parvifolia which displayed little variation in the intensity and scale of FSGS between sites despite substantial variation in topographic heterogeneity. Conversely, the intensity of FSGS for P. tomentella was greater at a more topographically heterogeneous than a homogeneous site, and a significant difference in the overall pattern of FSGS was detected between sites for this species. These results suggest that local patterns of FSGS may in some species be shaped by habitat heterogeneity in addition to limited gene flow by pollen and seed dispersal. Site factors can therefore contribute to the development of FSGS. Confirming consistency in species’ FSGS amongst sites is an important step in managing timber tree genetic diversity as it provides confidence that species specific management recommendations based on species reproductive traits can be applied across a species’ range. Forest managers should take into account the interaction between reproductive traits and site characteristics, its consequences for maintaining forest genetic resources and how this might influence natural regeneration across species if management is to be sustainable

    Detection of Mutations Associated with Variants of Concern Via High Throughput 2 Sequencing of SARS-CoV-2 Isolated from NYC Wastewater

    Full text link
    Monitoring SARS-CoV-2 genetic diversity is strongly indicated because diversifying selection may lead to the emergence of novel variants resistant to naturally acquired or vaccine-induced immunity. To date, most data on SARS-CoV-2 genetic diversity has come from the sequencing of clinical samples, but such studies may suffer limitations due to costs and throughput. Wastewater-based epidemiology may provide an alternative and complementary approach for monitoring communities for novel variants. Given that SARS-CoV-2 can infect the cells of the human gut and is found in high concentrations in feces, wastewater may be a valuable source of SARS-CoV-2 RNA, which can be deep sequenced to provide information on the circulating variants in a community. Here we describe a safe, affordable protocol for the sequencing of SARS CoV-2 RNA using high-throughput Illumina sequencing technology. Our targeted sequencing approach revealed the presence of mutations associated with several Variants of Concern at appreciable frequencies. Our work demonstrates that wastewater-based SARS-CoV-2 sequencing can inform surveillance efforts monitoring the community spread of SARS-CoV-2 Variants of Concern and detect the appearance of novel emerging variants more cheaply, safely, and efficiently than the sequencing of individual clinical samples

    Tracking cryptic SARS-CoV-2 Lineages Detected in NYC Wastewater

    Full text link
    Tracking SARS-CoV-2 genetic diversity is strongly indicated because diversifying selection may lead to the emergence of novel variants resistant to naturally acquired or vaccine-induced immunity. To monitor New York City (NYC) for the presence of novel variants, we deep sequence most of the receptor binding domain coding sequence of the S protein of SARS-CoV-2 isolated from the New York City wastewater. Here we report detecting increasing frequencies of novel cryptic SARS-CoV-2 lineages not recognized in GISAID’s EpiCoV database. These lineages contain mutations that had been rarely observed in clinical samples, including Q493K, Q498Y, E484A, and T572N and share many mutations with the Omicron variant of concern. Some of these mutations expand the tropism of SARS-CoV-2 pseudoviruses by allowing infection of cells expressing the human, mouse, or rat ACE2 receptor. Finally, pseudoviruses containing the spike amino acid sequence of these lineages were resistant to different classes of receptor binding domain neutralizing monoclonal antibodies. We offer several hypotheses for the anomalous presence of these lineages, including the possibility that these lineages are derived from unsampled human COVID-19 infections or that they indicate the presence of a non-human animal reservoir
    • …
    corecore