Monitoring SARS-CoV-2 genetic diversity is strongly indicated because diversifying selection may lead to the emergence of novel variants resistant to naturally acquired or vaccine-induced immunity. To date, most data on SARS-CoV-2 genetic diversity has come from the sequencing of clinical samples, but such studies may suffer limitations due to costs and throughput. Wastewater-based epidemiology may provide an alternative and complementary approach for monitoring communities for novel variants. Given that SARS-CoV-2 can infect the cells of the human gut and is found in high concentrations in feces, wastewater may be a valuable source of SARS-CoV-2 RNA, which can be deep sequenced to provide information on the circulating variants in a community. Here we describe a safe, affordable protocol for the sequencing of SARS CoV-2 RNA using high-throughput Illumina sequencing technology. Our targeted sequencing approach revealed the presence of mutations associated with several Variants of Concern at appreciable frequencies. Our work demonstrates that wastewater-based SARS-CoV-2 sequencing can inform surveillance efforts monitoring the community spread of SARS-CoV-2 Variants of Concern and detect the appearance of novel emerging variants more cheaply, safely, and efficiently than the sequencing of individual clinical samples