412 research outputs found

    Elastic-Plastic Finite Element Analysis of Fatigue Crack Growth in Mode 1 and Mode 2 Conditions

    Get PDF
    Presented is an alternate cost-efficient and accurate elastic-plastic finite element procedure to analyze fatigue crack closure and its effects under general spectrum loading. Both Modes 1 and 2 type cycling loadings are considered. Also presented are the results of an investigation, using the newly developed procedure, of various factors that cause crack growth acceleration or retardation and delay effects under high-to-low, low-to-high, single overload, and constant amplitude type cyclic loading in a Mode 1 situation. Further, the results of an investigation of a centercracked panel under external pure shear (Mode 2) cyclic loading, of constant amplitude, are reported

    Programmable reconfiguration of Physarum machines

    Full text link
    Plasmodium of Physarum polycephalum is a large cell capable of solving graph-theoretic, optimization and computational geometry problems due to its unique foraging behavior. Also the plasmodium is unique biological substrate that mimics universal storage modification machines, namely the Kolmogorov-Uspensky machine. In the plasmodium implementation of the storage modification machine data are represented by sources of nutrients and memory structure by protoplasmic tubes connecting the sources. In laboratory experiments and simulation we demonstrate how the plasmodium-based storage modification machine can be programmed. We show execution of the following operations with active zone (where computation occurs): merge two active zones, multiple active zone, translate active zone from one data site to another, direct active zone. Results of the paper bear two-fold value: they provide a basis for programming unconventional devices based on biological substrates and also shed light on behavioral patterns of the plasmodium

    Approximating Mexican highways with slime mould

    Full text link
    Plasmodium of Physarum polycephalum is a single cell visible by unaided eye. During its foraging behavior the cell spans spatially distributed sources of nutrients with a protoplasmic network. Geometrical structure of the protoplasmic networks allows the plasmodium to optimize transport of nutrients between remote parts of its body. Assuming major Mexican cities are sources of nutrients how much structure of Physarum protoplasmic network correspond to structure of Mexican Federal highway network? To find an answer undertook a series of laboratory experiments with living Physarum polycephalum. We represent geographical locations of major cities by oat flakes, place a piece of plasmodium in Mexico city area, record the plasmodium's foraging behavior and extract topology of nutrient transport networks. Results of our experiments show that the protoplasmic network formed by Physarum is isomorphic, subject to limitations imposed, to a network of principle highways. Ideas and results of the paper may contribute towards future developments in bio-inspired road planning

    A porphyrin-based microporous network polymer that acts as an efficient catalyst for cyclooctene and cyclohexane oxidation under mild conditions

    Get PDF
    The highly efficient dibenzodioxin-forming reaction between the (pentafluorophenyl)porphyrin manganese(III) (MnP) and hexahydroxytriptycene (HHT) provide a new microporous network polymer (P1), which demonstrated a large surface area (1080 m2 g− 1) and proved to be an efficient solid for heterogeneous catalysis for cyclooctene and cyclohexane oxidation under mild conditions and with high capacity of recovery and reuse in many catalytic cycles

    Preparation of catalysts based on iron(III) porphyrins heterogenized on silica obtained by the Sol-Gel process for hydroxylation and epoxidation reactions

    Full text link
    Solid catalysts have been prepared by chemical interaction of iron(III) porphyrins with the surface of the pores of a silica matrix obtained by the sol-gel method. The presence of the complexes in the silica matrix and the morphology of the obtained particles were studied by UV-Vis spectroscopy, powder X-ray diffractometry, infrared spectroscopy, transmission electron microscopy, electron paramagnetic resonance and thermogravimetric analysis. The catalytic activity of the immobilized iron(III) porphyrins in the oxidation of (Z)-cyclooctene, cyclohexene and cyclohexane was evaluated in dichloromethane/acetonitrile 1:1 solvent mixture (v/v) using iodosylbenzene as oxidant. Results were compared with those achieved with the homogeneous counterparts

    Pattern formation of reaction-diffusion system having self-determined flow in the amoeboid organism of Physarum plasmodium

    Full text link
    The amoeboid organism, the plasmodium of Physarum polycephalum, behaves on the basis of spatio-temporal pattern formation by local contraction-oscillators. This biological system can be regarded as a reaction-diffusion system which has spatial interaction by active flow of protoplasmic sol in the cell. Paying attention to the physiological evidence that the flow is determined by contraction pattern in the plasmodium, a reaction-diffusion system having self-determined flow arises. Such a coupling of reaction-diffusion-advection is a characteristic of the biological system, and is expected to relate with control mechanism of amoeboid behaviours. Hence, we have studied effects of the self-determined flow on pattern formation of simple reaction-diffusion systems. By weakly nonlinear analysis near a trivial solution, the envelope dynamics follows the complex Ginzburg-Landau type equation just after bifurcation occurs at finite wave number. The flow term affects the nonlinear term of the equation through the critical wave number squared. Contrary to this, wave number isn't explicitly effective with lack of flow or constant flow. Thus, spatial size of pattern is especially important for regulating pattern formation in the plasmodium. On the other hand, the flow term is negligible in the vicinity of bifurcation at infinitely small wave number, and therefore the pattern formation by simple reaction-diffusion will also hold. A physiological role of pattern formation as above is discussed.Comment: REVTeX, one column, 7 pages, no figur

    Congenital Neosporosis in Goats from the State of Minas Gerais, Brazil

    Get PDF
    Congenital Neospora caninum infection was diagnosed in two Saanen goat kids from two distinct herds with a history of abortion and weak newborn goat kids in the Southern region of the State of Minas Gerais, Brazil. The first kid was weak at birth, had difficulty to rise and was unable to nurse. Gross lesions of porencephaly and hydrocephalus ex vacuo were seen. Multifocal necrosis, gliosis and non-supurative encephalitis were observed in the brain. Several parasitic cysts with a thick wall that reacted strongly only with polyclonal antiserum to Neospora caninum were seen in the cerebral cortex, brain stem and cerebellum. The second kid was born from a Neospora caninum seropositive mother that aborted in the last pregnancy. It was born without clinical signs. The diagnosis of neosporosis was based on antibody titer of 1:800 to N. caninum by indirect fluorescence antibody test obtained from blood collected before the goat kid ingested the colostrum and Neospora caninum DNA was detected by polymerase chain reaction and sequenced from placenta. This is the first report of neosporosis in goats in the southeast region of Brazil

    When the path is never shortest: a reality check on shortest path biocomputation

    Full text link
    Shortest path problems are a touchstone for evaluating the computing performance and functional range of novel computing substrates. Much has been published in recent years regarding the use of biocomputers to solve minimal path problems such as route optimisation and labyrinth navigation, but their outputs are typically difficult to reproduce and somewhat abstract in nature, suggesting that both experimental design and analysis in the field require standardising. This chapter details laboratory experimental data which probe the path finding process in two single-celled protistic model organisms, Physarum polycephalum and Paramecium caudatum, comprising a shortest path problem and labyrinth navigation, respectively. The results presented illustrate several of the key difficulties that are encountered in categorising biological behaviours in the language of computing, including biological variability, non-halting operations and adverse reactions to experimental stimuli. It is concluded that neither organism examined are able to efficiently or reproducibly solve shortest path problems in the specific experimental conditions that were tested. Data presented are contextualised with biological theory and design principles for maximising the usefulness of experimental biocomputer prototypes.Comment: To appear in: Adamatzky, A (Ed.) Shortest path solvers. From software to wetware. Springer, 201

    Direct measurements of the effects of salt and surfactant on interaction forces between colloidal particles at water-oil interfaces

    Full text link
    The forces between colloidal particles at a decane-water interface, in the presence of low concentrations of a monovalent salt (NaCl) and of the surfactant sodium dodecylsulfate (SDS) in the aqueous subphase, have been studied using laser tweezers. In the absence of electrolyte and surfactant, particle interactions exhibit a long-range repulsion, yet the variation of the interaction for different particle pairs is found to be considerable. Averaging over several particle pairs was hence found to be necessary to obtain reliable assessment of the effects of salt and surfactant. It has previously been suggested that the repulsion is consistent with electrostatic interactions between a small number of dissociated charges in the oil phase, leading to a decay with distance to the power -4 and an absence of any effect of electrolyte concentration. However, the present work demonstrates that increasing the electrolyte concentration does yield, on average, a reduction of the magnitude of the interaction force with electrolyte concentration. This implies that charges on the water side also contribute significantly to the electrostatic interactions. An increase in the concentration of SDS leads to a similar decrease of the interaction force. Moreover the repulsion at fixed SDS concentrations decreases over longer times. Finally, measurements of three-body interactions provide insight into the anisotropic nature of the interactions. The unique time-dependent and anisotropic interactions between particles at the oil-water interface allow tailoring of the aggregation kinetics and structure of the suspension structure.Comment: Submitted to Langmui

    A biologically inspired network design model

    Get PDF
    A network design problem is to select a subset of links in a transport network that satisfy passengers or cargo transportation demands while minimizing the overall costs of the transportation. We propose a mathematical model of the foraging behaviour of slime mould P. polycephalum to solve the network design problem and construct optimal transport networks. In our algorithm, a traffic flow between any two cities is estimated using a gravity model. The flow is imitated by the model of the slime mould. The algorithm model converges to a steady state, which represents a solution of the problem. We validate our approach on examples of major transport networks in Mexico and China. By comparing networks developed in our approach with the man-made highways, networks developed by the slime mould, and a cellular automata model inspired by slime mould, we demonstrate the flexibility and efficiency of our approach
    corecore